

25th March 2023

Per email only: stefano.delvecchio@obfa.ie

Stefano Del Vecchio, **OBFA** Architects, 1 Johnson Place, Dublin 2, D02HW58

The Cube Building, Monahan Road, Cork T12 H1XY. Received. 19/05/23 0:021 4555 694 M: 086 2600 290 W: www.pjbarrett.ie E: info@pjbarrett.ie

PRELIMINARY DAMP & TIMBER DECAY REPORT

Dear Stefano,

Re: Renovation & Alterations at Dunlo Hill/Dunlo Street, Ballinasloe, Co. Galway.

Date of inspection: We carried out our inspection from the $14^{th} - 16^{th}$ of March, 2023.

The Buildings Inspected: A set of seven workers' cottages. A two-bay by two bay threestorey end-of-terrace building (former pub which is a Protected Structure RPS 2730) with a two bay two-storey addition. A two-bay, three-storey terraced building (townhouse).

Purpose of Inspection: To review opening-up works directed by Mckenna Consulting Engineers and undertaken by C&N Higgins Construction.

Property Status & Limitations of Review: Rooms were removed of most furniture, and soft furnishings were in place. Opening-up works were kept to a minimum and were sparse.

Weather Conditions: The weather during our inspection was showery and cold.

Directions: All directions are taken from the street and facing the main façade of all properties.

Moisture readings: All timber moisture and hygrometer readings were taken using a calibrated MMS2 pin and surface scanning moisture meter. Masonry readings were taken using a Radtke Messtechnik calcium carbide meter.

References: Any drawings in this report are provided by OBFA as design drawings.

Restrictions & Limitations: Selective opening-up works were undertaken prior to our inspection in several locations. As the opening-up works were limited, the condition of the remaining structure can only be estimated. We have not inspected any other parts of the structure which are covered by linings, unexposed or inaccessible, and we are therefore unable to report that any such part of the property is free from defect. The findings of this report are not a complete condition report but allow an understanding about the condition of the underlying fabric.

General

All buildings reviewed are essentially in a state of dereliction. The Workers' Cottages are in overall poor condition, with considerable water ingress through the roofs. This has resulted in the failure of the majority of the timber structure. Additionally, the water ingress has saturated the buildings, which will take some years to dry out fully.

Dooley's pub has several decay issues at the front and rear, but the timber structure is relatively intact. The ground floor and basement areas require a robust intervention.

The three-storey townhouse has several issues from water penetration, particularly at the rear and ground floor levels. However, the fabric is generally intact, with several ongoing decay issues.

Based on the level of active decay on all buildings, especially the three-storey townhouse and Dooley's pub, we recommend early intervention in fixing all rainwater goods and preventing further water ingress into the building would be beneficial to the condition overall structure and forthcoming restoration.

Notwithstanding the long-term deterioration of the timber structure from water ingress, the finished ground floor levels in relation to the external levels are a significant impediment contributing to dampness at low levels in practically all buildings. A holistic approach to all buildings is required to control dampness, particularly at the base of the walls, as several contributing factors add to the moisture. While breathability is a key factor in controlling moisture, a hybrid approach is likely to be required at the base of the walls in some areas.

Figure 1. Shows the elevation facing Dunlo Street.

Three Storey Townhouse

Ground Floor

The ground floor is a suspended timber floor at the front, with long-term decay from high moisture content and poor subfloor ventilation. The remaining floors are solid, presumably without any form of DPM present based on the high moisture content.

The base of the stairs is in poor condition, and there is solid masonry on the underside of the stairs adding to the issue. Most lintels at this level have decay present and should be replaced in full as per the engineers' detail.

Rising Damp

No physical DPC was located during our inspection of the building, as expected. As highlighted above, the internal FFL is lower than the road level, and the rear ground level is too high. This is the significant contributing factor to the rising dampness noted. All efforts should be made to reduce the external ground level to a minimum of 150mm below the FFL; however, we appreciate that this may not be feasible on the street side.

Installing a chemical damp proof course could be considered as part of the works; however, in our view, it may have limited control over the dampness at a low level based on the level of the building and surrounding topography/ geology.

Approach

The following proposal is subject to further review when the masonry is fully accessible. We recommend that all floors be removed in full. We recommend that a Geocell/Glapur foam glass aggregate is installed as per the engineers' detail. Allow for additional depth adjacent to all external walls; this detail reduces capillary action against the external walls.

Provide to hack off all internal plaster and install a scud and scratch coat of NHL 3.5 lime-based mortar to the exterior walls and all walls abutting an external wall. Ensure <u>all</u> timbers embedded in the masonry are removed as part of this process.

Fit a Wykamol CM8 cavity drain membrane to the inside of the exterior walls at the full height of the room and against all walls abutting an external wall. Install a Wykamol CM20 membrane to the underside of the new floor slab and tape it to the C20 membrane to give a complete seal. Install the appropriate breathable drylining system in front on completion.

Externally, reduce ground levels. At the rear of the building, install a French Drain detail as per the engineers' detail, and ideally, the drain should be 1 meter out from the external wall. Install Geocell/Glapur foam glass gravel to the trench to prevent capillary action against the wall. Install a decorative stone to finish top if required.

On the street side, ideally, additional drainage is introduced against the wall. Install an appropriate stone drainage channel along the face of the building to guide water away.

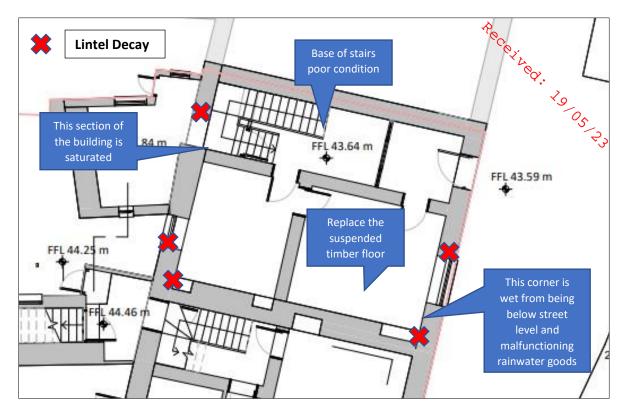


Figure 2. Shows the ground floor of the Three Storey Townhouse.

Figure 3. Shows the ground floor of the Three Story Townhouse. Note the base of the stairs is in poor condition.

First Floor

The first-floor joists are parallel to the front wall at the front of the building. The bearing end of the joist closest to the wall has some decay present on both sides of the building. The floor joists in the main bedroom have some deflection due to the room's span but are generally reasonable.

The floor joists at the rear were inaccessible during our inspection. We have noted that the masonry at the rear was damp, which is likely to cause the decay of the bearing ends.

We recommend that you allow for repairing 25% of all floor joists at this level, subject to further review when they are fully accessible. Allow for reviewing all chimney and stair trimming timbers when fully accessible.

The lintel in the rear bedroom has signs of decay and should be replaced in full as per the engineers' detail.

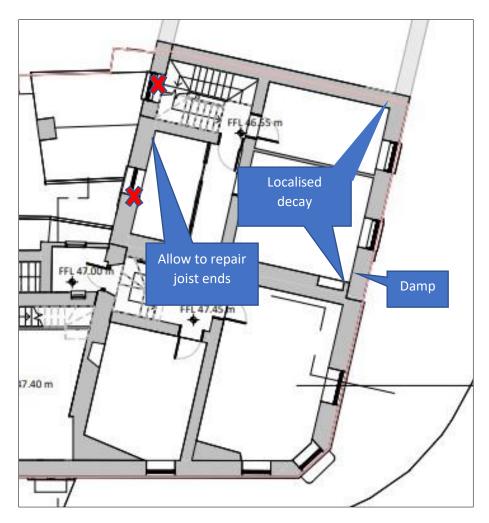


Figure 4. Shows the first floor of the Three Storey Townhouse

Second Floor

Received. The second-floor joists are embedded into the front and, presumably, the rear walls (not exposed). The floor joists in the main bedroom have some deflection due to the span of the room but are generally reasonable.

We recommend that you allow for repairing 25% of all floor joists, subject to further review when they are fully accessible. Allow for reviewing all chimney and stair trimming timbers when fully accessible.

The floor joists at the rear were inaccessible during our inspection. We have noted that the masonry at the rear was damp, which is likely to cause the decay of the bearing ends.

The lintel in the front bedroom has signs of decay and should be replaced in full as per the engineers' detail. Allow for replacing the adjacent window lintel, subject to further investigation. The rear lintel shows signs of deterioration and should be further reviewed when accessible.

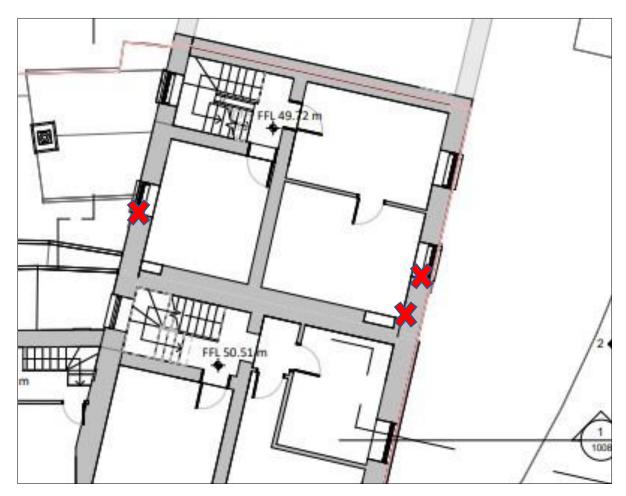


Figure 5. Highlights areas of damaged lintels on the second floor.

Roof

The roof consists of a traditional cut timber roof as the primary structure which rest on a long purlin. The floor joists in the attic are light and have deflected considerably as a result. We recommend that the entire floor is reviewed. The roof is slate covered and underdrawn with a non-breathable sarking felt, presumably installed in the 1970s. The attic void has little ventilation cross ventilation but vents through the chimney. The roof structure is generally reasonably maintained, with localised decay noted primarily at both gables, which requires local repair

We have recorded that there is evidence of light scattered common furniture beetle (*Anobium punctatum*) within the roof space. The floorboards and joists have heavy damage in some areas.

The span of the purlin at the front of the building is long and has deflected in the centre. We recommend that the purlin is strengthened/supported as per the engineers' detail. The purlin at the rear is cut to allow headroom into the attic. The bearing ends of the purlins show signs of decay where they are embedded in the wall/chimney. We recommend that all decayed timber be cut back and a steel splice/shoe detail installed per the engineers' detail.

Figure 6. Shows a broad view of the attic space.

External

The most critical aspect of preventing moisture issues in the building is mitigating the external ground-level detail. We strongly recommend that a robust approach is undertaken in order to prevent water from lodging/accumulating around the building. Preventing splash from passing cars would be included in this approach.

We have noted several leaking gutters and downpipes around the building, which are actively decaying the building fabric. The rear downpipe detail is currently saturating the base of the wall. The front downpipe with the adjoining Dooleys pub is leaking and causing deterioration internally as a result. Provide to install anti-splash concrete gully surrounds on all new gulleys. On completion, we recommend that all rainwater goods are directed into a gully and that any new rainwater goods are oversized where possible.

The external render appears to be sand and cement based, which contributes to the dampness within the building. We recommend that all render is removed and replaced with a lime-based harling-smooth render on completion. Note that a harling coat provides good water-shedding qualities and can dry out masonry faster than a smooth render.

The annexe at the rear is in poor condition, and the joint between the structure allows water ingress.

Both chimneys allow water ingress, and the shared chimney with Dooley's pub is in poor condition. The stepped section of the gable (where the roof abuts Dooleys) requires specific attention.

Figure 7. Shows an aerial view of the shared chimney.

Dooleys Pub

Basement

Received.

All timbers within the basement have decayed from wet rot and woodboring beetle. This includes the lightwell window lintels and rear lintels, the bottom of the stairs and supporting timbers.

We recommend that all timbers in the basement are entirely replaced as per the engineers' detail.

The light wells require specific detailing to waterproof as they can be challenging to seal thoroughly. Waterproofing should be done on the positive side of the masonry to prevent ingress. Otherwise, an improved design to prevent ingress should be considered.

We recommend that the basement is fully waterproofed using the following membrane. We do not recommend cementitious tanking as it can have knock-on effects and is generally irreversible for use in a protected structure.

Fit a Wykamol CM8 cavity drain membrane to the inside of all walls at the full height of the basement. Install a Wykamol CM20 membrane to the underside of the new floor slab and tape it to the C20 membrane to give a complete seal. Allow for installing a SumpFlo Twin BBPS (303) sump pump with a backup alarm. Install the appropriate drylining system in front on completion.

The chimney/fireplace in the basement was particularly wet during our inspection.

We recommend that a Vapourflow basement ventilation system is installed as part of crossflow ventilation.

Figure 8. Shows the area exposed in the basement. Note the water ingress through the light well.

Ground Floor

The ground floor of the pub area is in poor overall condition. The joist ends in the walls are heavily decayed, and there is a deterioration of the main floor joists as a result of being damp for an extended period of time. There have been supporting timbers installed at some point which are sagging. We recommend that the floor is replaced in full as per the engineers' detail. We recommend that all new timbers installed are certified pressure treated and that they rest on steel rather than becoming embedded in a damp wall on completion.

The floor in the two-storey section has an elevated moisture content, most likely as there is no DPM present.

Rising Damp

No physical DPC was located during our inspection of the building, as expected. The external level along the Dunlo Street elevation is reasonable. Dampness at the joint of the building with the three-storey townhouse results from malfunctioning rainwater goods. The level of the footpath along the Dunlo Hill elevation is high in relation to the FFL. This is the significant contributing factor to the rising dampness noted. All efforts should be made to reduce the external ground level to a minimum of 150mm below the FFL; however, we appreciate that this may not be feasible on the street side.

Installing a chemical damp proof course could be considered as part of the works; however, in our view, it may have limited control over the dampness at a low level based on the level of the building and surrounding topography/ geology.

Approach

The following proposal is subject to further review when the masonry is fully accessible. We recommend that all solid floors be removed in full. We recommend that a Geocell/Glapur foam glass gravel is installed as per the engineers' detail. Allow for additional depth adjacent to all external walls; this detail reduces capillary action against the external walls.

Provide to hack off all internal plaster and install a scud and scratch coat of NHL 3.5 lime-based mortar to the exterior walls and all walls abutting an external wall.

You could install a French drain detail at the front of the building to reduce splash against the wall and allow the walls to be fully breathable inside and out. Install Geocell/Glapur foam glass gravel to the trench to prevent capillary action against the wall. Install a decorative stone to finish top if required.

This approach would mean that the base of the wall may remain damp and dry out seasonally. Spoiling may occur with this option, and the breathable plaster at a low level may be sacrificial. Externally, a new lime-based harling can help the building to shed water in this instance. On the Dunlo Hill street elevation, ideally, additional drainage is introduced

against the wall. Install an appropriate stone drainage channel along the face of the building to guide water away from the building.

The wall plaster is in poor condition and contaminated with salts from water ingress.

The timber lintel over the main shopfront has decay present on the east side where it was exposed. We recommend that the lintel be exposed for further review during the project and that, from a quantity point of view, it is replaced in full as per the engineers' detail.

There is an embedded bonding timber adjacent to the lintels that has heavy decay and should be removed, and the socket is infilled with masonry and lime mortar.

The fireplace/chimney was wet in this location during our inspection and heavily contaminated with salts.

The section of masonry where the previous door was infilled on the Dunlo Hill elevation was damp during our inspection due to water ingress and possibly condensation due to the slenderness of the masonry.

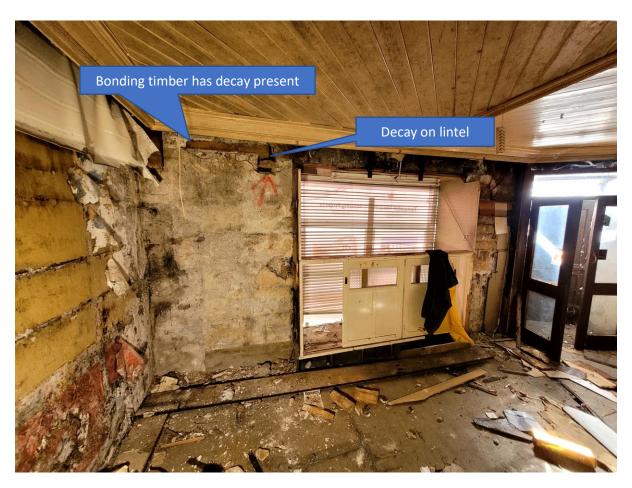


Figure 9. Shows a broad view of the ground floor of Dooleys Pub.

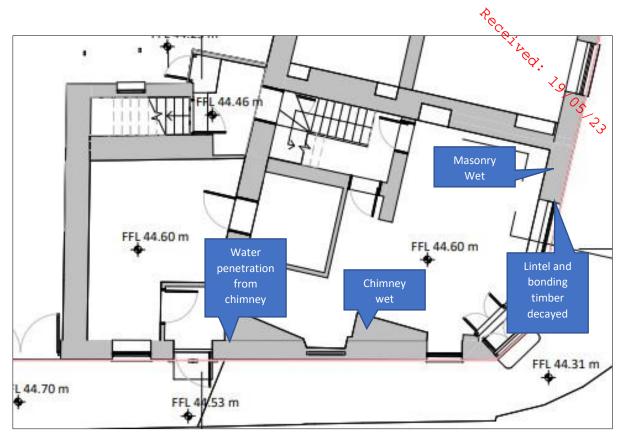


Figure 10. Shows a marked-up section of the ground floor in Dooley's Pub

Figure 11. Shows a broad view of the ground floor, including a section of the chimney that is currently wet.

Intermediate Floor (Bathroom)

This section of the building is in poor overall condition. Based on the level of water ingress and surrounding details, we suggest that this location requires a robust intervention.

First Floor

1. The first-floor structure over the bar has an uncommon arrangement, presumably to facilitate the timber sheeting underneath. There appear to be some trimming timbers in the front wall forming the structure. Not enough opening-up works were undertaken to allow a full review of the structure. Based on the level of decay noted in the lintels below this location, we recommend that an allowance of 25% repair is allowed for. Allow for reviewing all chimney and stair trimming timbers when fully accessible.

The wall is wet at the junction with the three-storey townhouse due to malfunctioning rainwater goods. The chimneys at the Dunlo Hill elevation were damp due to water ingress. The front wall has a high moisture content present as the gutter is missing at the roof level. The wall plaster is in overall poor condition and contaminated with salts from water ingress.

Both lintels exposed were reasonable. The bearing pad on the east window has decay present, and the centre lintel may have decay present based on the condition of the lintel at the second-floor level. We recommend that all lintels be reviewed during the project and allow to replace one at this level, subject to further review.

There is original cornice at this level that is reasonably intact and should be retained.

The first floor in the two-story section has heavy damage from the common furniture beetle, and the joists in the main room are supported on a steel midway. This section should be treated and strengthened or replaced per the engineers' detail. Review the joist ends when accessible. The joists over the carriageway have some damage from common furniture beetle. Similarly, they should be treated and strengthened/replaced as per the engineers' direction.

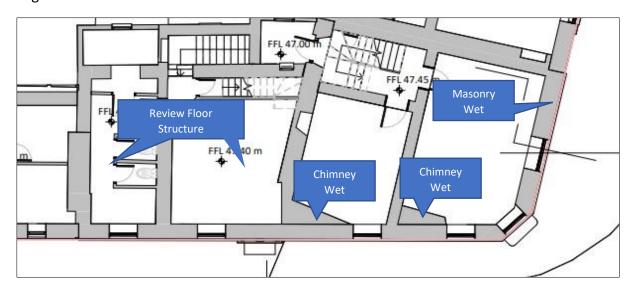


Figure 12. Shows a marked section of the first floor of Dooley's Pub.

Figure 13. Shows a broad view of the first-floor front room.

Figure 14. Shows pockets exposed on the Dunlo Hill elevation.

Second Floor

The second-floor structure is in a reasonable condition where it was exposed locally. Notwithstanding that, based on the level of dampness recorded at this level, we recommend that an allowance to repair approximately 25% of all ends is allowed for subject to further review when all joists are exposed. Allow for reviewing all chimney and stair trimming timbers when fully accessible.

We have noted that all three lintels exposed at the front of the building have decay present, and the remaining two are likely to be in a similar condition. Allow for replacing all lintels at this level, subject to further review.

The wall plaster is in very poor condition at this level and contaminated with salts from water ingress. There is foil-backed lining paper used at this level, suggesting an ongoing issue with dampness at this level.

The upper section of the two-storey area of the building is in poor overall condition. We have noted significant deterioration of the building fabric at this level, and the roof was poor where it was accessible. We recommend that all timber in this location, including the lean-to roof, is reviewed and allow to replace the entire timber structure at this level.

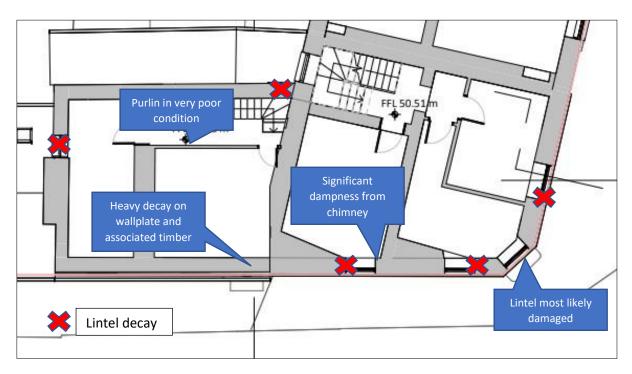


Figure 15. Shows marked-up areas of decay at the second floor level.

Main Roof

The main roof consists of a traditional cut timber roof as the primary structure. The roof structure is generally reasonably maintained, with localised decay noted primarity a the gable and chimney, which requires local repair. The roof is slate covered and underdrawn with a non-breathable sarking felt, presumably installed in the 1970s. We have noted that the purlin ends embedded in the common chimney have decay present and require repair as per the engineers' detail.

The old lime parging/torching is left on the flooring since the roof was stripped. We have not accessed the floor joists at his level. We have recorded that there is evidence of light scattered common furniture beetle (*Anobium punctatum*) within the roof space. The floorboards and joists have heavy damage in some areas.

The chimney is again consistently damp in this location due to water penetration.

Figure 16. Shows the broad view of the attic room in Dooley's Pub.

External

The render, which has blown in areas, appears to be sand and cement based, which contributes to the dampness within the building. There is a crack at a high level on the Dunlo Hill elevation, which allows water penetration into the building. We recommend that all render is removed and replaced with a lime-based harling-smooth render on completion. Note that a harling coat provides good water-shedding qualities and can dry out masonry faster than a smooth render.

The chimneys allow considerable water ingress into the building, which is causing notable staining both internally and externally. A poultice or additional action may be required at the Dunlo Hill elevation to address the salt contamination from 'bleeding' through the new render.

We have noted several leaking gutters and downpipes around the building, which are actively decaying the building fabric. The front downpipe with the adjoining Dooleys pub is leaking and causing deterioration internally as a result. Provide to install anti-splash concrete gully surrounds on all new gulleys. On completion, we recommend that all rainwater goods are directed into a gully and that any new rainwater goods are oversized where possible. Allow for an independent downpipe to be installed down from the main roof.

Figure 17. Shows the external of Dooley's Pub where the render has blown. Note the staining from the chimneys.

Workers Cottages

The worker's cottages are in poor overall condition. The properties range from pazardous due to failed floor structures to a fair condition where the unit is reasonably intact. Unit 3 is in the best overall condition; however, this building has been altered in the past.

Apart from Unit 3, all roofs are in inferior condition, and some have failed allowing a significant amount of water into the buildings.

There is a fungal outbreak in Unit 6 that may reach Unit 5 on the party wall. The fungal outbreak appears to be associated with the wet rot fungus *Coniophora puteana*; however, this requires further investigation as the area is hazardous where it is present, and we could not safely review the fabric. This issue requires further input from a timber decay specialist during the project and may require treatment.

In our view, based on the level of decay present, we suggest that the entire timber structure – Roof, First floors, Suspended timber floors and Timber lintels are replaced in full as per the engineers' detail.

Figure 18. Shows an aerial view over a typical cottage that is in poor condition.

Dampness

As discussed above, the buildings are currently wet from water ingress through the roofs, walls and general dereliction. This dampness will take a number of years to dry out fully and should be given priority to prevent further issues when the buildings are occupied. The all, an enabling works package would be put in place to fix all ingress issues and allow the building to dry out. This can be a significant factor when the building is replastered in a breathable material; if the walls are wet, the lime plaster can act as a poultice drawing moisture out. This can slow down drying times and cause deterioration or spoiling of new plaster.

Apart from the water ingress, two particular issues are having a significant impact on the building fabric.

- 1. The footpath level is above the floor level in all buildings, which saturates the base of the wall. Furthermore, the centre of the road is considerably higher than the internal FFL.
- 2. The chimneys are saturated and heavily contaminated with hygroscopic salts. This item will be discussed further below as it applies to all chimneys in the group.

Rising Damp

No physical DPC was located during our inspection of the building as expected. As highlighted above, the internal FFL is lower than the road level along with the gable of Unit 1. This is the significant contributing factor to the rising dampness noted. As the floor is low in relation to the external footpath/road, the moisture rises to approximately 1500mm above floor level in the buildings.

This is also impacting all internal walls due to the position of the building in relation to the road. All efforts should be made to reduce the external ground level to a minimum of 150mm below the FFL; however, we appreciate that this may not be feasible on the street side.

Installing a chemical damp proof course could be considered on the internal and rear walls as part of the work. However, in our view, it may have limited control over the dampness at a low level based on the level of the building and surrounding topography/ geology.

Approach

The following proposal is subject to further review when the masonry is fully accessible. We recommend that all floors be removed in full. We recommend that a Geocell/Glapur foam glass gravel is installed as per the engineers' detail. Allow for additional depth adjacent to all external walls; this detail reduces capillary action against the external walls. This should also be considered externally below the footpath.

Provide to hack off all internal plaster and install a scud and scratch coat of NHL 3.5 lime-based mortar to the exterior walls and all walls abutting an external wall. Ensure <u>all</u> timbers embedded in the masonry are removed as part of this process.

Fit a Wykamol CM8 cavity drain membrane to the inside of the exterior walls at the full height of the room and against all walls abutting an external wall. Install a Wykamol CM20 membrane to the underside of the new floor slab and tape it to the C20 membrane to give complete seal. Install the appropriate drylining system in front on completion.

Externally, reduce ground levels. At the rear of the buildings, install a French Drain detail as per the engineers' detail, and ideally, the drain should be 1 meter out from the external wall. Install Geocell/Glapur foam glass gravel to the trench to prevent capillary action against the wall. Install a decorative stone to finish top if required.

On the street side, ideally, additional drainage is introduced against the wall. Install an appropriate stone drainage channel along the face of the building to guide water away.

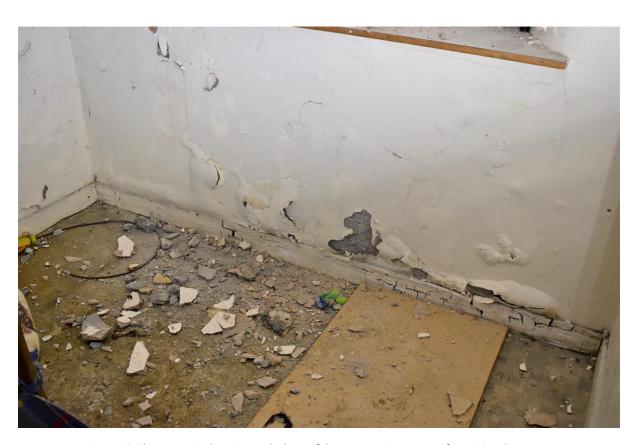


Figure 19. Shows a typical section at the base of the masonry in a cottage from rising dampness.

External

The building appears to have been re-rendered more recently using hard sand and cement-based mortar. The render appears to be trapping water and preventing the walls from drying to the outside.

There were a number of timber heads installed that do not appear to be original and were possibly fitted to straighten the heads over the windows and doors.

A number of the downpipes on this section are fitted directly into the ground and do not spill into a gully trap. In our view, this is a poor detail which should be reviewed as part of the work. We recommend that each individual house or pair of houses should have its own downpipe to prevent overspill.

As mentioned above, a robust approach to the surrounding footpath and ground is required to appropriately control moisture from accumulating around the base of the masonry in all houses.

Figure 20. Shows a section of removed render that has exposed an external timber.

Chimneys

As discussed in this document, all chimneys appear to be causing issues from decades of burning solid fuel which has been exacerbated by water ingress. There is significant staining 'bleeding' through the masonry in practically all buildings. The salt-contaminated mortal can continue to 'bleed' through the fabric on completion, and in our view, it should be isolated. There are specific mortar mixes that can help control the salt contamination that could be considered.

We recommend that a robust repair is carried out on all chimneys. Ideally, this work would be carried out early in the project to start the drying-out process.

In our experience, hygroscopic salts can lead to dampness issues exacerbated by internal humidity. Provide to strip all decayed internal plaster on any chimney.

Provide to clean out all chimneys, install an anti-rain/bird cowl on completion, and ideally; all flues vent from each room.

Figure 21. Shows a section of deterioration from salts bleeding through from the chimney at the second floor level in Dooley's Pub.

Condensation

Peceir There were significant condensation issues in all buildings reviewed as they are hot adequately heated and the buildings are cold. This has resulted in mould growth in several areas.

We suggest that all window and door openings, as well as wall-floor and wall-ceiling junctions, can be condensation risks.

The best approach for insulating the building depends on what approach is taken to the overall structure. The conservation architect will have significant input into the best method for retrofitting any insulation on any external wall. We strongly recommend that hygrothermal calculations or WUFI analysis be undertaken to identify all risks.

Thermal cohesion is a crucial factor to take into account when insulating a solid wall building. Upgrading the insulation can inevitably form thermal bridging that can lead to condensation.

Note that the embedded timber structure, particularly joist ends and lintels become a weak point for decay when upgrading thermal insulation in a traditional building, as the dew point is typically in the area of the bearing. If walls are being stripped and breathable insulation installed, then the timber structure needs to be thoroughly examined during the process. The ventilation should be reviewed as part of any retrofit, and the attic ventilation should be upgraded as part of the process.

Mould

We have recorded mould in large sections throughout all buildings. Mould is now considered a health risk. There is considerable literature published on respiratory conditions attributable to mould exposure. During the planned works, we recommend that all areas contaminated with mould are removed and disposed of. All locations that are part of the building fabric and contain mould growth should be treated with a suitable medical-grade biocide. All areas should be thoroughly vacuumed using a Hepa-Filtered vacuum system.

Specialist Attendance

Allow for attendance by timber decay specialists to direct/inspect all opening-up and advise on timber decay issues during any planned work.

As highlighted throughout the report, there are several issues with active common furniture beetle throughout all buildings. We recommend that a timber specialist treat all retained timbers with Lignum Pro 162.5.

Allow for general boron-based wood preservative treatment of roof timbers and localised and directed treatment of all retained at-risk ends, wall plates and vulnerable embedded wall timbers.

Allow for providing certified and fully pre-treated timber to facilitate all repair work. 9

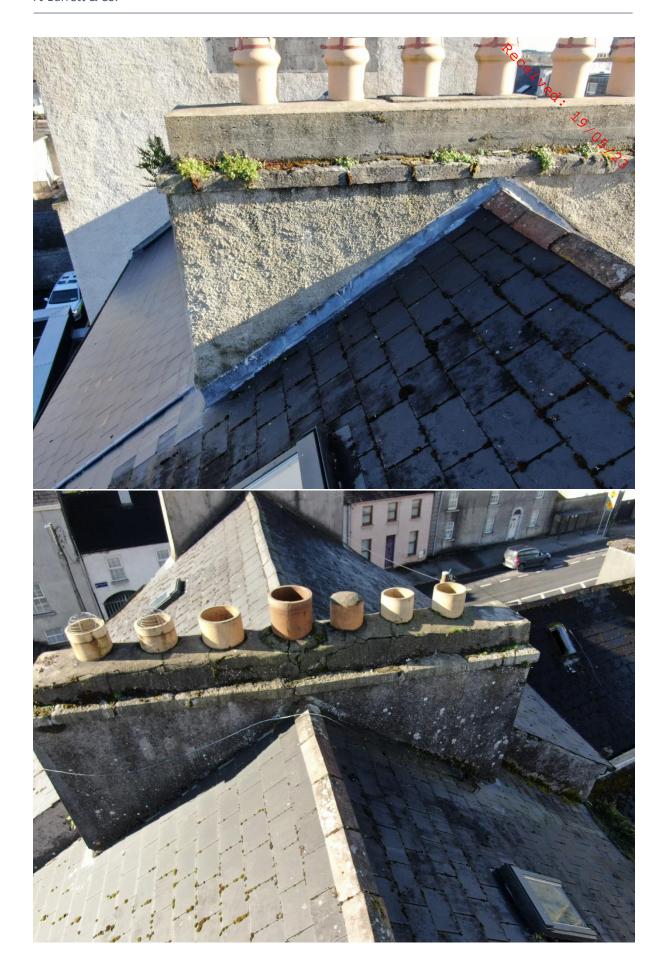
All treatment work should be carried out by a timber treatment specialist, and all cutting back or sterilisation works should be carried out under their supervision.

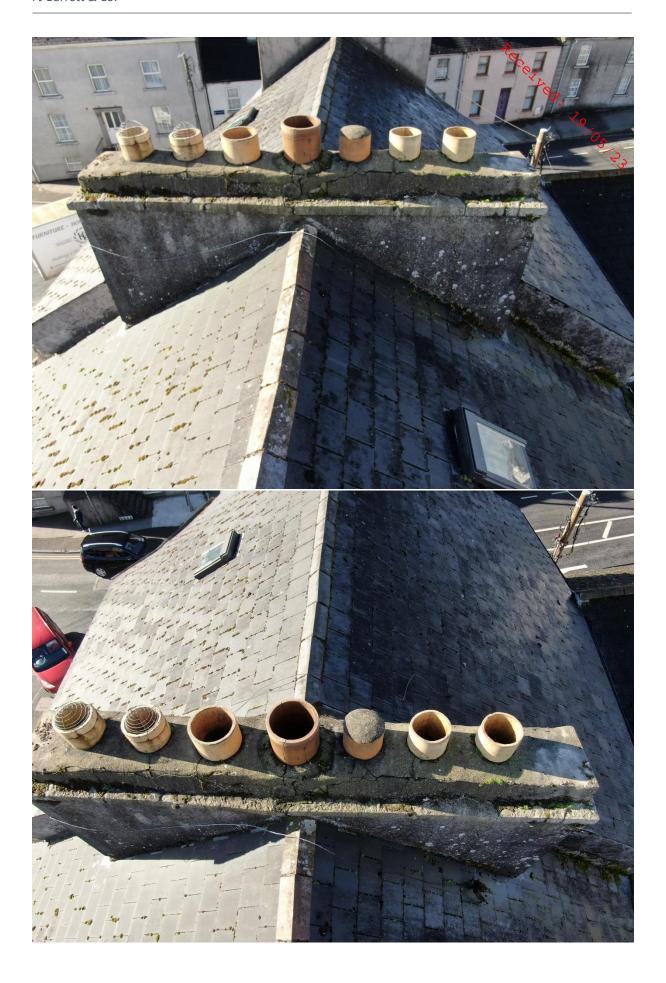
I hope that the information contained in this report will be of assistance to you, and if you require any further information, please do not hesitate to contact me directly.

Yours sincerely,

Peter Barrett.

CSRT, PGDip, MSc (Bldg Cons), MISSE MIWSc.


PJ BARRETT & Co.


<u>See additional images below.</u>

Dictated by Peter Barrett and read and emailed in his absence. E & OE

<u>T & C's</u>: No part of this report may be copied or reproduced, by any means, without the written permission of National Damp & Timber Decay Solutions Ltd. T/A PJ Barrett & Co.

National Damp & Timber Decay Solutions Ltd. T/A PJ Barrett & Co. has used reasonable skill, care, and diligence in compiling this report and gives no representations or warranties, express or implied, and no responsibility or liability is accepted for the accuracy or completeness of the information inserted in the document or any other written or oral information given to any interested party or its advisers. Any such liability is expressly disclaimed. We have not inspected areas of underlying structure outside of the rooms opened up by us or parts of the structure which are covered, unexposed or inaccessible. We are, therefore, unable to report that any such part of the property is free from defects. This report is not a structural engineering report, but elements of the structure can be incorporated by damp and timber decay issues. Damp & Timber Decay Solutions Ltd T/A PJ Barrett & Co. accepts no responsibility or liability for any omission in its inspection or the report related to defects or irregularities which are not reasonably visible at the time of the assessment, particularly: below ground or which are concealed or closed in behind finished surfaces. In addition, the customer accepts that the inspector may not detect some defects because they may only occur intermittently or the defect has been deliberately concealed. A preliminary report is typically an overview and may be subject to further investigation where required at an additional fee. National Damp & Timber Decay Solutions Ltd. T/A PJ Barrett & Co. is not responsible for any errors or omissions or for the results obtained from the use of information outlined in this report. PJ Barrett & Co.'s liability shall be confined to the direct damages and fees paid for the services rendered.

