Stephen Reid Consulting
Traffe; and Transportation

N59 Oughterard Bridge, Co Galway
Traffic Report on Proposed Signalisation

For Galway County Council

Prepared by:
Stephen Reid Consulting Traffic and Transportation Limited Estuary House, New Street, Malahide, Co Dublin, K36 KH32 +353(0)879793479
stephenreid@stephenreidconsulting.com www.stephenreidconsulting.com

Contents

1 Introduction. .3
1.1 Background .3
2 Existing Conditions Assessment 5
2.1 Topographical Survey and Site Visit Assessment 5
2.2 Existing Traffic Conditions 5
3 Options Development 6
3.1 Proposed Traffic Signals and Pedestrian Crossing options 6
3.2 Preferred Option for Traffic Signals and Pedestrian Provision 6
3.3 Further Work Considerations. 13

Appendices:

Traffic Flow Diagrams

Traffic Count Data

Linsig Modelling Input and Output (AM Peak Hour)

Traffico Quality Audit

SRC drawings

Date	Version	Issue	Checked	Approved
07.03.2023	Revision 0	For GCC/TII Review	SR	SR
19.04 .2023	Revision 1	Updated	SR	SR

1 Introduction

1.1 BACKGROUND

This Traffic Report has been prepared by Stephen Reid Consulting Traffic and Transportation oroehalf of Galway County Council (GCC) to set out the work undertaken to develop a design proposal for improving the safety of the N59 Oughterard Bridge for all road users and with particular regard for Vulnerable Road Users (VRUs). The bridge is located on the N59 Clifden Road at the western end of Oughterard in County Galway.

The layout of Oughterard has resulted in a situation where most of the town's residential areas and town centre amenities are located on the south side of the Owenriff River, while the primary and post-primary schools are located on the north side of the river.

There are two bridges crossing the river in the town:

- The easternmost bridge is on the Glann Road, to the north of the town centre (approximately 400 m north of the town centre via Camp Road). This bridge is wide enough for two-way traffic and has a footpath on both sides. There are access steps down onto a river walkway trail along the north bank to the west of the Glann Road. However, there is no direct connection from this point to the schools to the west of this bridge, which are separated by a field (the distance from the field gate on the northwest side of the river to the western boundary of the National School is 175 m).
- The westernmost bridge is on the N59 Clifden Road, and this is a skewed bridge with a tight turn on each end, and a level drop of approximately 2 metres between the south and the north ends. The cross-section between the stone parapets is $5.54-5.58$ metres wide, with no footpath provision, and while the section spanning the river is approximately 20 metres, the overall length for a pedestrian to walk between the south footpath at the Church access and the north footpath on the Clifden Road is 45 metres (including crossing the N59 west at the corner and the Church car park access. Pedestrians are fully exposed to traffic while making this crossing, and it is noted that this is most acute at times of the day when primary school children (and their parents) and secondary school students are walking to and from the schools to the north east of the bridge via the L1310 Carrowmanagh road (which is compounded by higher volumes of traffic to and from the schools, including several coaches/school buses. In the case of the secondary school students, it is noted that in addition to the morning and afternoon 'school run' periods, some students also walk to/from the town centre to access convenience stores/cafes during their lunch break.

Therefore, the current situation with only one bridge route providing access to the schools (via the N59) requires VRUs to mix with road traffic (both local traffic and National Route through traffic) in an uncontrolled manner and without adequate protection. On the L1310, there is only a short section of footpath on the north side of the bridge, and no footpath from this point to the left turn towards the schools (a further 75 metres walking distance with no footpath).

The result of lack of a safe crossing route without dedicated paths increases the number of school children who are brought to/from the schools by car/coach (increasing the potential for traffic conflict and conflict with those VRUs who are walking or cycling across the bridge) and increasing congestion at the two ends of the bridge as it is difficult for two vehicles to pass in opposite directions.

From on-site observations and survey camera footage, it is noted that when the schooldises and other large vehicles using the National Route are turning onto the bridge from the N59 or from the 1310 the drivers have to swing their vehicles wide and use the entire road width between the parapets. Also, buses and coaches exiting from the L1310 have to cross to the wrong side of the road before turning outonto the bridge, while buses turning right into the L1310 from the north end of the bridge overrun the kerbed buildout area to manoeuvre past traffic waiting to exit the L1310 at the stopline.

Forward visibility is compromised by the bridge parapet (although larger vehicles with elevated driver positions can see over the parapet walls at the ends of the bridge).

The site location is identified in Figure 1.1 below.

Figure 1.1: Site Location, N59 Oughterard, Co Galway (source: https://trafficdata.tii.ie/publicmultinodemap.asp)

The initial assessment was to assess options for delivering a protected/segregated pedestrian zone across the bridge, with traffic signals at either side to control traffic movements and facilitate controlled crossing points of the Church access and the N59 (northwest).

2 EXISTING CONDITIONS ASSESSMENT

2.1 Topographical Survey and Site Visit Assessment

A full topographical survey was undertaken of the bridge area and approach roads at an early pojint in the study, to determine critical widths and allow for preparation of design options.

The existing conditions and key dimensions are on drawing SRC-286-102 (Rev A).
This was supplemented by a site visit in December 2020 between SRC, GCC project liaison and Traffic Solutions Limited (TSL) who provided input on traffic signals options and implementation.

2.2 Existing Traffic Conditions

During the initial assessment period of late 2020 and early 2021, it was noted that some Covid-19 restrictions were in place which would have impacted on traffic conditions and levels of pedestrian activity. The project was temporarily put on hold by Client request in 2021.

The project was reactivated in 2022 and traffic counts were carried out on a weekday during term-time (Tuesday $18^{\text {th }}$ October 2022), as it was considered that activity and daily movements had settled down following the lifting of Covid restrictions.

The full traffic and pedestrian survey data is appended to this report. The traffic counts were undertaken on the N59 junctions at both ends of the bridge and at the junction with Station Road to the south east of the bridge.

From a review of the survey data, it was noted that the key hours for pedestrian and vehicle activity are related to the school day.

The AM peak hour (highest flows through the junctions) occurred at 08.15-09.15, and 89 pedestrians crossed the bridge during this one hour period (80 northbound and 19 southbound pedestrians recorded). Most of the northbound movements were made by school students.

There is a lunchtime peak hour from 13.00-14.00 where secondary school students are walking to/from the town centre and there is also an element of parents picking up Junior Infants from the National School in the hour preceding the main finish time for the National School, with 90 northbound and 70 southbound pedestrians recorded on the bridge (160 pedestrians in total).

The afternoon peak hour occurs from 15.00-16.00 and while there were 44 pedestrian movements across the bridge, this is less concentrated in terms of pedestrian and traffic movements than the AM peak hour (as primary school pupils would have passed through the bridge area before 15.00 so only secondary school students are observed, mostly in the latter part of the hour).

Three school coaches were observed during the AM and PM school run peak periods (these buses make an arrival movement and a departure movement via the L1310 and across the bridge).

The peak hour pedestrian flows and vehicle turning movements are summarised in Diagrams 1-4, appended to this report.

3 Options Development

3.1 Proposed Traffic Signals and Pedestrian Crossing options

The initial design option had the objective of delivering a protected/segregated zone on the westaide of bridge deck (either kerbed or delineated by wands with base units).

Each end would connect to a crossing point which would result in two separate pedestrian crossing locations (across the N59 west at the north end of the bridge, and across the Church access at the south end of the bridge).

The crossing points would be incorporated into a full traffic signal control arrangement with the traffic movements on the N59 westbound and eastbound directions, the exit from the Church and the L1310 Carrowmanagh Road arm all operating in separate traffic stages with a dedicated green time, so that there could be no conflicting movements meeting in the bridge area or at the junction zone at each site.

It was proposed that the traffic signals would be an adaptive system which would be adjust the green times based on real time queuing information on each approach, with the traffic flow and queue information collected from inductive detector loops installed in the road surface that feed back into the traffic signal controller.

The most commonly used system for single junctions or small networks is MOVA (Microprocessor Optimised Vehicle Actuation), which is a fully adaptive traffic control system that is specifically designed to maximise the operational efficiency of traffic signal controlled junctions operating with MOVA.

The MOVA control system would very suitable as it would be fully adaptive to the different levels of pedestrian and traffic and movement demands across the day). For example, there would be times of the day when there is low or no pedestrian demand and if no pedestrian demand is detected (the push button units are not activated by a pedestrian) the next pedestrian stage is not called and the junction 'traffic stages' continue through the cycle.

Under this arrangement the junction would be similar to a staggered crossroads with the bridge deck forming the stagger between the two side roads.

A Road Safety Audit was undertaken on the Stage 1 proposal and the Audit Team recommended that suitable tracking analysis should be undertaken to ensure adequate space within the design to accommodate larger vehicles using the bridge.

Following discussions with GCC, further and more detailed tracking assessments were undertaken of the large coach turning manoeuvres on/off the bridge, with particular attention to the school run bus movements in/out of the L1310 and the right turn from the N59 east onto the bridge.

3.2 Preferred Option for Traffic Signals and Pedestrian Provision

From the foregoing assessment, it was determined that a protected/segregated footpath of could not be achieved to comply with the standard minimum width recommended by the Design Manual for Urban Roads and Streets (DMURS), and a relaxation to a sub-standard width would be impractical as it would be compromised by the swept paths of larger coaches turning on/off the bridge into the L1310 and the N59 east, which meant there would be no effective protection measure where pedestrians could walk across the bridge while one or other of the traffic movements was also presented with a green traffic light allowing drivers to enter the bridge deck area.

Therefore, in discussions with TII and GCC, it was agreed that a revised version of thedesign would be developed where the pedestrian crossing would extend between the south and north landing points, with all traffic movements stopped during the pedestrian crossing stage.

An independent Quality Audit (incorporating a Road Safety Audit) was carried out by Traffico orothis revised option design. This is appended to the report with the Designer Feedback form completed and signed off.

The proposed layout and signals/ducting requirements are illustrated in drawings SRC-286-101 and SRC-286-102 (both Rev G) and the tracking assessment SRC-286-103 (also Rev G).

This has been modelled using Linsig software for the peak periods of activity using the flows in Diagrams 1-4.

The proposed signal staging and phasing has been developed from reviews with Traffic Solution Limited (TSL) who are a supplier and installer of traffic signals systems including MOVA controlled systems.

It should be noted that the pedestrian stage will have a long green man time (of 35 s) with a clearing period from the previous traffic stage and also before the following traffic stage. These clearing periods between the green signal stages for the different traffic or pedestrian movements are known as 'intergreens'.

A traffic signal 'cycle' is the operation of all elements (traffic movements and pedestrian movements) and the time taken to complete this is the cycle time.

This arrangement will necessitate a significant element of every cycle allocated to the pedestrian crossing and the associated safety buffer at each end when there can be no moving traffic to facilitate vehicles clearing the crossing area preceding the green man period and to facilitate pedestrians clearing the crossing area at the end of the green man period (which is effectively the same time as the pedestrian green man time itself).

The signals would have a minimum cycle time which is a combination of the minimum green times allocated to each stage within the cycle and the intergreen periods between each stage, but as a MOVA adaptive system is proposed the cycle time can vary through extending the green light time for some movements and reducing it for others, depending on the real time demand information fed to the controller by the queue detectors.

PROPOSED SIGNAL STAGES AND TRAFFIC/PEDESTRIAN PHASING

Figure 3.1 Staging Diagram - Demand Only Stage are expected to be called in every cycle during AM peak hour school run conditions.

It is assumed in the AM peak hour model (as a worst-case) that the pedestrian stageis called up for every cycle, as pedestrians arrive at the bridge in a range of singles, small groups and larger pataons.
As a worst-case it is also assumed that the Church arm is called up in every cycle (in reality thísis unlikely as the flows out of the Church are low during the peak hours).

Outside of the peak periods when there is a low stopline demand for the L1310 and Church arms, the MOVA controller will allow the signals to bypass these stages when no vehicles are detected on the approach or at the stopline. Similarly, if no pedestrian activity is detected and no demand called on the demand units at the pedestrian dwell zones, the pedestrian stage will not be called up.

In these cases (which will occur for much of a typical day), the MOVA controller will allocate green time primarily to the N59 movements, although this will remain adaptive and will change to include these side arm and pedestrian crossing stages into the cycle whenever demands are detected.

The results of this 'worst-case' scenario for the AM peak school run period with the existing traffic count flows and a pedestrian demand in every cycle have been included in the Linsig report appended to this report.

Due to the length of the pedestrian crossing between the south side kerbline and northside kerbline which results in a long green man period and the commensurate clearing intergreens that are required for safety, it is expected that the peak volume traffic/pedestrian periods will be running with a minimum cycle time of 162 s (if all stages are called). In simple terms, the cycle time is each of the green times (see Table 3.1 below, which total 43 seconds, plus the pedestrian stage of 35 seconds, plus the intergreen between each stage) which is why the cycle time is much longer than the 43 seconds minimum green that can be allocated to the traffic movements.

Linsig models output a number of different metrics and results and the key information is 'Degree of Saturation' which identifies the extent to which the particular arm or lane within the junction is at or above practical operating capacity (a Degree of Saturation of 90% would be reasonable in urban areas during peak periods, and above this level the delay and queuing will increase). The Mean Maximum Queue is the length of queue that can form by the end of a red signal for that arm of the junction, and is normally presented in the results in pcu (for reference a $p c u=5.75 \mathrm{~m}$, so multiplying the queue by this provides the maximum length of queue back from the stopline on each arm)

The Degree of Saturation and Mean Maximum Queue length (in both pcu and metres) from the Linsig results are summarised in the following table.

Station Road to the east of the traffic signals is modelled as a linked junction operating under priority control (Stopline and sign) and therefore does not have a traffic phase or green time in the traffic signal model.

Link	Traffic Phase	Green time (s)	Degree of Saturation	Mean Maximum Queue (pcu)	Mean Maximum Queue (metres)
N59 East	B	20	131.2%	60.1	345 m
N59 West	A	8	146.1%	35.2	202 m
L1310	C	8	187.8%	61.5	354 m
Church	D	7	10.6%	0.5	3 m
Station Rd	-	-	62.1%	1.7	10 m

Table 3.1 Summary of AM peak hour Linsig Results for Signals with Long Crossing Option

The Mean Maximum Queue lengths are illustrated on an aerial image for the N59 L1310 arms of the
proposed traffic signals (these are measured from the stopline positions taken from traffic signals design), shown in Figures 3.2, 3.3. and 3.4.

Figure 3.2 illustrates that the MMQ (worst case) on the N59 east would extend back to the Community Centre/Corrib Gym access.

Figure 3.3 illustrates that the MMQ (worst case) on the N59 west would extend back past the Rugby Club access to the parking spaces beside the river.

Figure 3.4 illustrates that the MMQ (worst case) on the L1310 Carrowmanagh Road would extend back to the National School roundabout.

From a review of the existing conditions on site it was observed that there is a heavily queued conditions on the L1310 between the bridge and the schools in both directions during the latter part of the AM peak hour (as there is returning school run traffic and traffic arriving to the schools in this period). As the L1310 has stopline control traffic can exit onto the N59 when there is a gap in the N59 traffic flow but this is limited by the heavy right turn demand entering the L1310 from the bridge, and influenced by pedestrian activity on the bridge crossing to the northernmost kerbline.

The existing queues on the N59 approaches are not significant in the morning peak period, as these movements have priority and currently traffic can pass two-way on the bridge at low speeds (unless there is a coach or HGV turning onto the bridge, which results in vehicles waiting in an informal 'shuttle working' system until the opposing larger vehicle has cleared the bridge.

There is AM peak queuing on the N59 to the east of the car parking at the shops to the east of Station Road, as the car parking reduces the effective road width so westbound vehicles have to wait when eastbound traffic is passing the parking area.

In terms of the time it would take for a vehicle to get from the back of a Mean Max Queue on the N59 or on the L1310, it is considered that with the limited green time periods available if the pedestrian demand is called in every cycle it would take several cycles of green light to get to the stopline on each arm.

Figure 3.3: Mean Max Queue length during 08.15.09.15 AM peak school run with traffic signals and pedestrian crossing demand each cycle (202m)

3.3 Further Work Considerations

It should be recognised that there is an opportunity for reduced vehicle trips with a safer arrangement for URUs to use the bridge with a dedicated crossing stage and traffic signals in place, which will kêduce the traffic demand and queueing on the N59 east and L1310 arms. This will in turn allow further optimization within the cycle time including further green time allocation to the N59 west, also reducing the queue on that arm.

It is key to the successful delivery and operation of the proposed traffic signal arrangement to obtain a high level of engagement in Active Travel modes for access to/from the schools, with walking and cycling reducing the dependence on relatively short private car journeys into and back from the school zone from the town centre (and possibly also reducing the bus demand). This should be addressed by GCC Active Travel Section and 'championed' by the schools.

While not integral to the success of the traffic signals, it is noted that the lack of footpath (approximately 80 m gap) on the L1310 Carrowmanagh Road between the N59 junction and the corner to the east should also be addressed to ensure that VRU pedestrians are walking along that side of the road and not walking along the riverside grassed area on the south side of the road which does not provide for linkage to the northernmost dwell point on the pedestrian crossing on the west side of the N59 to the north of the bridge.

Appendices

 | 99 | $\varepsilon 9$ | ε | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |

TRAFFINOMICS LIMITED

OUGHTERARD BRIDGE TRAFFIC COUNTS
OCTOBER 2022 CLASSIFIED PEDESTRIAN COUNTS

TRA/22/253

SITE: 01

DATE:
188th October 2022
DAY:
Tuesday

time	A то c					тот	U5	U16	A TO D			тот	U5	U16	A TOE			TOT
	U5	U16	ADULT	OAP	DIS				ADULT	OAP	DIS				ADULT	OAP	DIS	
07:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	3
07:30	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	2
07:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	1	4	0	0	5
08:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:15	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
08:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1
08:45	0	0	3	0	0	3	0	0	1	0	0	1	0	0	4	0	0	4
H/TOT	0	0	4	0	0	4	0	0	1	0	0	1	0	0	5	0	0	5
09:00	0	0	2	0	0	2	1	0	1	0	0	2	0	0	2	0	0	2
09:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
09:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
09:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	2	0	0	2	1	0	1	0	0	2	0	0	2	0	0	2
10:00	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0
10:15	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	2
10:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:45	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	2
H/TOT	0	0	0	0	0	0	0	0	1	0	0	1	1	1	2	0	0	4
11:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:15	0	0	0	0	0	0	0	0	0	0	0	0	1	6	1	0	0	8
11:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	2
11:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	1	6	3	1	0	11
12:00	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	2
12:15	0	0	1	0	0	1	0	0	0	0	0	0	0	6	1	0	0	7
12:30	0	0	0	0	0	0	0	0	0	0	0	0	0	27	0	0	0	27
12:45	0	0	0	0	0	0	0	0	0	0	0	0	0	14	0	0	0	14
H/TOT	0	0	1	0	0	1	0	0	0	0	0	0	1	47	2	0	0	50

TRAFFINOMICS LIMITED

OUGHTERARD BRIDGE TRAFFIC COUNTS
OCTOBER 2022 CLASSIFIED PEDESTRIAN COUNTS

TRA/22/253

SITE: 01

DATE:

DAY:
Tuesday

TIME	А то					TOT	U5	U16	A TO D			тот	U5	U16	A toe			TOT
	U5	U16	ADULT	OAP	DIS				ADULT	OAP	DIS				ADULT	OAP	DIS	
13:00	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
13:15	0	0	0	0	0	0	0	0	0	0	0	0	0	22	0	0	0	22
13:30	0	0	0	0	0	0	6	0	4	0	0	10	1	25	1	0	0	27
13:45	0	0	0	0	0	0	0	0	0	0	0	0	0	9	1	0	0	10
H/TOT	0	1	0	0	0	1	6	0	4	0	0	10	1	56	2	0	0	59
14:00	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	2	0	2
14:15	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1
14:30	0	10	3	0	0	13	0	1	1	0	0	2	0	8	6	0	0	14
14:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1
H/TOT	0	10	4	0	0	14	0	1	1	0	0	2	0	9	7	2	0	18
15:00	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1
15:15	0	0	0	0	0	0	0	3	0	0	0	3	0	1	1	0	0	2
15:30	0	0	0	0	0	0	0	1	0	0	0	1	0	1	0	0	0	1
15:45	0	2	0	0	0	2	0	7	0	0	0	7	0	11	0	0	0	11
H/TOT	0	2	0	0	0	2	0	11	0	0	0	11	0	14	1	0	0	15
16:00	0	2	0	0	0	2	0	0	0	0	0	0	0	4	0	0	0	4
16:15	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	2
16:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	2	0	0	0	2	0	0	0	0	0	0	0	6	0	0	0	6
17:00	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	2
17:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:30	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	3
17:45	1	0	1	0	0	2	0	1	0	0	0	1	0	1	0	0	0	1
H/TOT	1	0	1	0	0	2	0	1	0	0	0	1	0	6	0	0	0	6
18:00	0	0	0	0	0	0	0	0	0	0	0	0	0	4	2	0	0	6
18:15	0	0	0	0	0	0	0	1	0	0	0	1	0	0	1	0	0	1
18:30	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0
18:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	1	1	0	0	2	0	4	3	0	0	7
P/TOT	1	15	12	0	0	28	7	14	9	0	0	30	4	150	31	3	0	188

TRAFFINOMICS LIMITED

OUGHTERARD BRIDGE TRAFFIC COUNTS
OCTOBER 2022 CLASSIFIED PEDESTRIAN COUNTS

TRA/22/253

SITE:
01
DATE:
188th October 2022
DAY:
Tuesday

TIME	в то с					тот	U5	U16	B то D			тот	U5	U16	B TOE			TOT
	U5	016	ADULT	OAP	DIS				ADULT	OAP	DIS				ADULT	OAP	DIS	
07:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:30	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	2
07:45	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	1	0	0	1	0	2	0	0	0	2
08:00	0	0	0	0	0	0	0	0	0	0	0	0	0	2	2	0	0	4
08:15	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	3
08:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	5	2	0	0	7
09:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
09:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1
09:30	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1
09:45	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0
н/тот	0	0	0	0	0	0	0	0	1	0	0	1	0	1	1	0	0	2
10:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	3
10:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	3
11:00	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	2
11:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	2
12:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:30	0	0	1	0	0	1	0	0	0	0	0	0	0	0	2	0	0	2
12:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	1	0	0	1	0	0	0	0	0	0	0	0	2	0	0	2

TRAFFINOMICS LIMITED

OUGHTERARD BRIDGE TRAFFIC COUNTS
OCTOBER 2022 CLASSIFIED PEDESTRIAN COUNTS

TRA/22/253

SITE: 01

DATE:

DAY:
Tuesday

TIME	в то C					TOT	U5	U16	B TO D			TOT	U5	U16	B TO E			TOT
	U5	016	ADULT	OAP	DIS				ADULT	OAP	DIS				ADULT	OAP	DIS	
13:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
н/тот	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1
14:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	2
15:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1
15:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1
15:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1
15:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	3
16:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	2
16:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:30	0	0	1	0	0	1	0	0	1	0	0	1	0	0	0	0	0	0
16:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	1	0	0	1	0	0	1	0	0	1	0	0	2	0	0	2
17:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1
17:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1
17:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1
17:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	3
18:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18:15	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
18:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18:45	0	0	0	0	0	0	0	0	1	0	0	1	0	3	0	0	0	3
H/TOT	0	0	1	0	0	1	0	0	1	0	0	1	0	3	0	0	0	3
P/TOT	0	0	3	0	0	3	0	0	4	0	0	4	0	13	18	0	0	31

SITE: 01

LOCATION: N59 Clifden Road/Oughterard Bridge

DATE:

DAY: Tuesday

TIME	U5	U16	С TO A ADULT	OAP	DIS	TOT	U5	U16	С то в ADULT	OAP	DIS	TOT
07:00	0	0	0	0	0	0	0	0	0	0	0	0
07:15	0	0	0	0	0	0	0	0	0	0	0	0
07:30	0	0	0	0	0	0	0	0	0	0	0	0
07:45	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0
08:00	0	0	0	0	0	0	0	0	0	0	0	0
08:15	0	4	0	0	0	4	0	0	0	0	0	0
08:30	2	11	4	0	0	17	0	0	0	0	0	0
08:45	0	3	4	0	0	7	0	0	1	0	0	1
H/TOT	2	18	8	0	0	28	0	0	1	0	0	1
09:00	0	1	0	0	0	1	0	0	0	0	0	0
09:15	0	0	0	0	0	0	0	0	0	0	0	0
09:30	0	0	0	0	0	0	0	0	0	0	0	0
09:45	0	0	1	0	0	1	0	0	0	0	0	0
H/TOT	0	1	1	0	0	2	0	0	0	0	0	0
10:00	0	0	1	0	0	1	0	0	0	0	0	0
10:15	0	0	0	0	0	0	0	0	0	0	0	0
10:30	0	0	0	0	0	0	0	0	0	0	0	0
10:45	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	1	0	0	1	0	0	0	0	0	0
11:00	0	0	0	0	0	0	0	0	0	0	0	0
11:15	0	0	1	0	0	1	0	0	0	0	0	0
11:30	0	0	0	0	0	0	0	0	1	0	0	1
11:45	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	1	0	0	1	0	0	1	0	0	1
12:00	0	0	0	0	0	0	0	0	0	0	0	0
12:15	0	0	0	0	0	0	0	0	0	0	0	0
12:30	0	0	0	0	0	0	0	0	0	0	0	0
12:45	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0

SITE: 01

LOCATION: N59 Clifden Road/Oughterard Bridge

DATE:

DAY: Tuesday

TIME	U5	U16	С TO A ADULT	OAP	DIS	TOT	U5	U16	С то в ADULT	OAP	DIS	TOT
13:00	0	0	0	0	0	0	0	0	0	0	0	0
13:15	0	0	0	0	0	0	0	0	0	0	0	0
13:30	0	3	0	0	0	3	0	0	0	0	0	0
13:45	0	1	1	0	0	2	0	0	0	0	0	0
H/TOT	0	4	1	0	0	5	0	0	0	0	0	0
14:00	0	0	0	0	0	0	0	0	0	0	0	0
14:15	0	0	3	0	0	3	0	0	0	0	0	0
14:30	0	0	0	0	0	0	0	0	0	0	0	0
14:45	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	3	0	0	3	0	0	0	0	0	0
15:00	0	0	0	0	0	0	0	0	0	0	0	0
15:15	0	0	0	0	0	0	0	0	0	0	0	0
15:30	0	0	0	0	0	0	0	0	0	0	0	0
15:45	0	0	1	0	0	1	0	0	0	0	0	0
H/TOT	0	0	1	0	0	1	0	0	0	0	0	0
16:00	0	0	0	0	0	0	0	0	0	0	0	0
16:15	0	0	0	0	0	0	0	0	0	0	0	0
16:30	0	0	0	0	0	0	0	0	0	0	0	0
16:45	0	0	1	0	0	1	0	0	0	0	0	0
H/TOT	0	0	1	0	0	1	0	0	0	0	0	0
17:00	0	0	2	0	0	2	0	0	0	0	0	0
17:15	0	0	0	0	0	0	0	0	0	0	0	0
17:30	0	0	0	0	0	0	0	0	0	0	0	0
17:45	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	2	0	0	2	0	0	0	0	0	0
18:00	0	0	2	0	0	2	0	0	0	0	0	0
18:15	0	0	0	0	0	0	0	0	0	0	0	0
18:30	0	0	0	0	0	0	0	0	0	0	0	0
18:45	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	2	0	0	2	0	0	0	0	0	0
P/TOT	2	23	21	0	0	46	0	0	2	0	0	2

SITE: 01

LOCATION: N59 Clifden Road/Oughterard Bridge

DATE:

DAY: Tuesday

TIME	U5	U16	D TO A ADULT	OAP	DIS	TOT	U5	U16	D TO B ADULT	OAP	DIS	TOT
07:00	0	0	0	0	0	0	0	0	0	0	0	0
07:15	0	0	0	0	0	0	0	0	0	0	0	0
07:30	0	0	0	0	0	0	0	0	0	0	0	0
07:45	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0
08:00	0	0	0	0	0	0	0	0	0	0	0	0
08:15	0	0	0	0	0	0	0	0	0	0	0	0
08:30	1	1	1	0	0	3	0	0	0	0	0	0
08:45	0	3	0	0	0	3	0	0	0	0	0	0
H/TOT	1	4	1	0	0	6	0	0	0	0	0	0
09:00	0	0	0	0	0	0	0	0	1	0	0	1
09:15	0	0	0	0	0	0	0	0	1	0	0	1
09:30	0	0	0	0	0	0	0	0	0	0	0	0
09:45	0	0	1	0	0	1	0	0	1	0	0	1
H/TOT	0	0	1	0	0	1	0	0	3	0	0	3
10:00	0	0	0	0	0	0	0	0	0	0	0	0
10:15	0	0	0	0	0	0	0	0	0	0	0	0
10:30	0	0	0	0	0	0	0	0	0	0	0	0
10:45	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0
11:00	0	0	0	0	0	0	0	0	0	0	0	0
11:15	0	0	0	0	0	0	0	0	0	0	0	0
11:30	0	0	0	0	0	0	0	0	0	0	0	0
11:45	0	0	2	0	0	2	0	0	0	0	0	0
H/TOT	0	0	2	0	0	2	0	0	0	0	0	0
12:00	0	0	0	0	0	0	0	0	0	0	0	0
12:15	0	0	1	0	0	1	0	0	0	0	0	0
12:30	0	0	0	0	0	0	0	0	0	0	0	0
12:45	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	1	0	0	1	0	0	0	0	0	0

SITE: 01

LOCATION: N59 Clifden Road/Oughterard Bridge

DATE:

DAY: Tuesday

TIME	U5	U16	D TO A ADULT	OAP	DIS	TOT	U5	U16	D TO B ADULT	OAP	DIS	TOT
13:00	0	0	0	0	0	0	0	0	1	0	0	1
13:15	0	1	0	0	0	1	0	0	0	0	0	0
13:30	2	0	2	0	0	4	0	0	0	0	0	0
13:45	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	2	1	2	0	0	5	0	0	1	0	0	1
14:00	0	0	0	0	0	0	0	0	0	0	0	0
14:15	3	0	2	0	0	5	0	0	0	0	0	0
14:30	0	0	0	0	0	0	0	0	0	0	0	0
14:45	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	3	0	2	0	0	5	0	0	0	0	0	0
15:00	0	0	0	0	0	0	0	0	0	0	0	0
15:15	0	0	0	0	0	0	0	0	0	0	0	0
15:30	0	1	0	0	0	1	0	0	1	0	0	1
15:45	0	3	0	0	0	3	0	0	0	0	0	0
H/TOT	0	4	0	0	0	4	0	0	1	0	0	1
16:00	0	0	0	0	0	0	0	0	0	0	0	0
16:15	0	0	0	0	0	0	0	0	0	0	0	0
16:30	0	0	0	0	0	0	0	0	0	0	0	0
16:45	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0
17:00	0	0	0	0	0	0	0	0	0	0	0	0
17:15	0	0	0	0	0	0	0	0	0	0	0	0
17:30	0	0	0	0	0	0	0	0	0	0	0	0
17:45	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0
18:00	0	0	0	0	0	0	0	0	0	0	0	0
18:15	0	0	0	0	0	0	0	1	0	0	0	1
18:30	0	0	2	0	0	2	0	0	0	0	0	0
18:45	0	0	1	0	0	1	0	0	0	0	0	0
H/TOT	0	0	3	0	0	3	0	1	0	0	0	1
P/TOT	6	9	12	0	0	27	0	1	5	0	0	6

SITE: 01

LOCATION: N59 Clifden Road/Oughterard Bridge

DATE:

DAY: Tuesday

TIME	U5	U16	ETO A ADULT	OAP	DIS	TOT	U5	U16	ETO B ADULT	OAP	DIS	TOT
07:00	0	0	0	0	0	0	0	0	0	0	0	0
07:15	0	0	0	0	0	0	0	0	0	0	0	0
07:30	0	0	0	0	0	0	0	0	0	0	0	0
07:45	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0
08:00	0	2	1	0	0	3	0	0	2	0	0	2
08:15	0	18	0	0	0	18	0	0	0	0	0	0
08:30	2	5	2	0	0	9	0	1	0	0	0	1
08:45	1	3	1	0	0	5	0	0	0	0	0	0
H/TOT	3	28	4	0	0	35	0	1	2	0	0	3
09:00	0	0	0	0	0	0	0	0	0	0	0	0
09:15	0	0	0	0	0	0	0	0	1	0	0	1
09:30	0	1	0	0	0	1	0	0	0	0	0	0
09:45	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	1	0	0	0	1	0	0	1	0	0	1
10:00	0	0	0	0	0	0	0	0	0	0	0	0
10:15	0	0	0	0	0	0	0	0	0	0	0	0
10:30	0	0	0	0	0	0	0	0	0	0	0	0
10:45	0	0	1	0	0	1	0	0	1	0	0	1
H/TOT	0	0	1	0	0	1	0	0	1	0	0	1
11:00	0	2	0	0	0	2	0	0	0	0	0	0
11:15	0	2	1	0	0	3	0	0	0	0	0	0
11:30	0	0	0	0	0	0	0	0	0	0	0	0
11:45	1	0	1	0	0	2	0	0	0	0	0	0
H/TOT	1	4	2	0	0	7	0	0	0	0	0	0
12:00	0	0	0	1	0	1	0	0	0	0	0	0
12:15	0	0	1	0	0	1	0	0	0	0	0	0
12:30	0	1	0	0	0	1	0	2	0	0	0	2
12:45	0	3	0	2	0	5	0	5	0	0	0	5
H/TOT	0	4	1	3	0	8	0	7	0	0	0	7

SITE: 01

LOCATION: N59 Clifden Road/Oughterard Bridge

DATE:

DAY: Tuesday

TIME	U5	U16	ETO A ADULT	OAP	DIS	TOT	U5	U16	ETOB ADULT	OAP	DIS	TOT
13:00	0	26	1	1	0	28	0	0	0	0	0	0
13:15	0	7	2	0	0	9	0	2	0	0	0	2
13:30	1	15	1	0	0	17	0	0	0	0	0	0
13:45	0	22	1	0	0	23	0	0	0	0	0	0
H/TOT	1	70	5	1	0	77	0	2	0	0	0	2
14:00	0	7	0	0	0	7	0	0	0	0	0	0
14:15	0	19	2	0	0	21	0	4	0	0	0	4
14:30	1	2	2	0	0	5	0	3	0	0	0	3
14:45	1	2	2	1	0	6	0	1	1	0	0	2
H/TOT	2	30	6	1	0	39	0	8	1	0	0	9
15:00	0	0	0	0	0	0	0	0	3	0	0	3
15:15	0	0	0	0	0	0	0	1	0	0	0	1
15:30	0	0	0	0	0	0	0	0	0	0	0	0
15:45	0	0	0	1	0	1	0	2	0	0	0	2
H/TOT	0	0	0	1	0	1	0	3	3	0	0	6
16:00	0	0	0	0	0	0	0	0	0	0	0	0
16:15	0	0	0	0	0	0	0	0	0	0	0	0
16:30	0	0	1	0	0	1	0	0	0	1	0	1
16:45	0	3	1	0	0	4	0	0	0	0	0	0
H/TOT	0	3	2	0	0	5	0	0	0	1	0	1
17:00	0	0	1	0	0	1	0	0	2	0	0	2
17:15	0	1	1	0	0	2	0	0	0	0	0	0
17:30	0	0	0	0	0	0	0	0	1	0	0	1
17:45	0	1	0	1	0	2	0	0	0	0	0	0
H/TOT	0	2	2	1	0	5	0	0	3	0	0	3
18:00	0	2	0	0	0	2	0	0	1	0	0	1
18:15	0	1	3	0	0	4	0	0	0	0	0	0
18:30	0	1	1	0	0	2	0	0	0	0	0	0
18:45	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	4	4	0	0	8	0	0	1	0	0	1
P/TOT	7	146	27	7	0	187	0	21	12	1	0	34

Stephen Reid Consulting
Traffic and Transportation
Stephen Reid Consulting
Traffic and Transportation
Stephen Reid Consulting

Stephen Reid Consulting

Full Input Data And Results
Full Input Data And Results
User and Project Details

Project:	
Title:	
Location:	
Additional detail:	
File name:	Bridge long crossing model_rev1 inc Stn Rd.lsg3x
Author:	
Company:	
Address:	

Network Layout Diagram

Full Input Data And Results
Phase Diagram

Phase Input Data

Phase Name	Phase Type	Assoc. Phase	Street Min	Cont Min
A	Traffic		8	8
B	Traffic		20	20
C	Traffic		8	8
D	Traffic		7	7
E	Pedestrian		35	35
F	Dummy		20	20

Phase Intergreens Matrix

	Starting Phase						
Terminating Phase		A	B	C	D	E	F
	A		12	7	12	18	-
	B	12		12	6	18	-
	C	6	12		12	12	-
	D	12	6	12		12	-
	E	20	20	20	20		-
	F	-	-	-	-	-	

Phases in Stage

Stage No.	Phases in Stage
1	F
2	A
3	E
4	B
5	C
6	D

Stage Diagram

1	2		Min >= 8	3		Min >= 35	4	Min >= 20	5	Min >= 8	6	Min >= 7
						(c) B						

Phase Delays

Term. Stage	Start Stage	Phase	Type	Value
Cont value				

There are no Phase Delays defined

Prohibited Stage Change

	To Stage						
From Stage		1	2	3	4	5	6
	1		2	0	2	2	2
	2	0		18	12	7	12
	3	0	20		20	20	20
	4	0	12	18		12	6
	5	0	6	12	12		12
	6	0	12	12	6	12	

Full Input Data And Results
Give-Way Lane Input Data

Junction: J1: N59 Oughterard Bridge North Side
There are no Opposed Lanes in this Junction
Junction: J2: N59 Oughterard Bridge South Side
There are no Opposed Lanes in this Junction

Junction: J3: Station Road											
Lane	Movement	Max Flow when Giving Way (PCU/Hr)	Min Flow when Giving Way (PCU/Hr)	Opposing Lane	Opp. Lane Coeff.	Opp. Mvmnts.	Right Turn Storage (PCU)	Non-Blocking Storage (PCU)	RTF	Right Turn Move up (s)	Max Turns in Intergreen (PCU)
J3:1/1 (Station Road)	J2:2/1 (Left)	500	0	J3:3/1	1.09	To J2:2/1 (Ahead)	-	-	-	-	-
	J3:4/1 (Right)	500	0	J3:2/1	1.09	All					
				J3:3/1	1.09	To J2:2/1 (Ahead)					
$\mathrm{J} 3: 2 / 1$ (N59 Eastbound at Stn Rd)	J3:5/1 (Right)	1439	0	J3:3/1	1.09	All					

Full Input Data And Results

Lane Input Data

Junction: J1: N59 Oughterard Bridge North Side												
Lane	Lane Type	Phases	Start Disp.	End Disp.	Physical Length (PCU)	Sat Flow Type	Def User Saturation Flow (PCU/Hr)	Lane Width (m)	Gradient	C Néarside Lafe	Turns	Turning Radius (m)
J1:1/1 (N59 west)	U	A	2	3	60.0	Geom	-	3.25	0.00	Y		12.00
											$\begin{aligned} & \text { Arm } \\ & \text { J2:1 } \\ & \text { Right } \end{aligned}$	Inf
$\mathrm{J} 1: 2 / 1$$(\mathrm{~L} 1310$Carrowmanagh$\mathrm{Rd})$	U	C	2	3	60.0	Geom	-	3.00	2.00	Y	$\begin{gathered} \text { Arm } \\ \text { J1:3 } \\ \text { Ahead } \end{gathered}$	Inf
											$\begin{aligned} & \text { Arm } \\ & \text { J2:1 } \\ & \text { Left } \end{aligned}$	Inf
J1:3/1 (N59 West Exit Only)	U		2	3	60.0	User	1800	-	-	-	-	-
```J1:4/1 (L1310 Carrowmanagh Rd Exit Only)```	U		2	3	60.0	User	1800	-	-	-	-	-
J1:5/1   (Bridge Nthbd)	U		2	3	6.1	Inf	-	-	-	-	-	-

Junction: J2: N59 Oughterard Bridge South Side

Lane	Lane   Type	Phases	Start Disp.	End Disp.	Physical Length (PCU)	Sat   Flow   Type	Def User Saturation Flow (PCU/Hr)	Lane Width (m)	Gradient	Nearside Lane	Turns	Turning Radius (m)
J2:1/1   (Bridge Sthbd)	U		2	3	6.1	Inf	-	-	-	-	-	-
$\begin{gathered} \text { J2:2/1 } \\ \text { (N59 East) } \end{gathered}$	U	B	2	3	3.0	Geom	-	3.25	0.00	Y	Arm   Right	Inf
											$\begin{gathered} \text { Arm } \\ \text { J2:4 } \\ \text { Ahead } \end{gathered}$	Inf
J2:3/1 (Church Access)	U	D	2	3	60.0	Geom	-	3.00	0.00	Y	$\begin{gathered} \text { Arm } \\ \mathrm{J} 3: 2 \\ \text { Ahead } \\ \text { Arm } \\ \text { J1:5 Left } \end{gathered}$	Inf   Inf
J2:4/1   (Church   Access (Jcn Exit only))	U		2	3	60.0	User	1500	-	-	-	-	-

Full Input Data And Results

Junction: J3: Station Road												
Lane	Lane   Type	Phases	Start Disp	End Disp.	Physical Length (PCU)	Sat   Flow   Type	Def User Saturation Flow (PCU/Hr)	Lane Width (m)	Gradient	Nearside clane ${ }^{\circ} \mathrm{O}$.	Turns	Turning Radius (m)
J3:1/1   (Station Road)	0		2	3	60.0	User	1600	-	-		$\frac{1}{2}$	-
J3:2/1   (N59 Eastbound at $\operatorname{Stn} \mathrm{Rd}$ )	0		2	3	3.0	User	1800	-	-		$\mathrm{O}_{2}$	-
J3:3/1   (N59 Westbound at Stn Rd )	U		2	3	60.0	Inf	-	-	-	-	-	-
J3:4/1   (N59 Eastbound Exit only)	U		2	3	60.0	Inf	-	-	-	-	-	-
$\begin{aligned} & \mathrm{J} 3: 5 / 1 \\ & \text { (Stn Rd } \\ & \text { Southbound Exit } \\ & \text { only) } \end{aligned}$	U		2	3	60.0	Inf	-	-	-	-	-	-

## Traffic Flow Groups

Flow Group	Start Time	End Time	Duration	Formula
1: 'AM peak'	$08: 15$	$09: 15$	$01: 00$	

Scenario 1: 'Scenario 1' (FG1: 'AM peak', Plan 1: 'Network Control Plan 1')
Traffic Flows, Desired
Desired Flow :

Origin	Destination	
		Tot.
	Tot.	-

Full Input Data And Results

## Traffic Lane Flows

Lane	Scenario 1:   Scenario 1				
Junction: J1: N59 Oughterard Bridge North Side		$	$	J1:1/1	152
:---:	:---:				
J1:2/1	191				
J1:3/1	137				
J1:4/1	247				
J1:5/1					
Junction: J2: N59 Oughterard Bridge South Side					
J2:1/1	280				
J2:2/1	330				
J2:3/1					
J2:4/1					
Junction: J3: Station Road	10				
J3:1/1	13				
J3:2/1	98				
J3:3/1	285				
J3:4/1	326				
J3:5/1	294				

## Lane Saturation Flows

Junction: J1: N59 Oughterard Bridge North Side

Lane	Lane Width (m)	Gradient	Nearside Lane	Allowed Turns	Turning Radius (m)	Turning Prop.	Sat Flow (PCU/Hr)	Flared Sat Flow (PCU/Hr)
$\begin{gathered} \text { J1:1/1 } \\ \text { (N59 west) } \end{gathered}$	3.25	0.00	Y	Arm J1:4   Ahead	12.00	28.5 \%	1873	1873
				Arm J2:1 Right	Inf	71.5 \%		
J1:2/1   (L1310 Carrowmanagh Rd)	3.00	2.00	Y	Arm J1:3 Ahead	Inf	10.0 \%	1831	1831
				Arm J2:1 Left	Inf	90.0 \%		
J1:3/1 (N59 West Exit Only Lane 1)	This lane uses a directly entered Saturation Flow						1800	1800
J1:4/1   (L1310 Carrowmanagh Rd Exit Only Lane 1)	This lane uses a directly entered Saturation Flow						1800	1800
J1:5/1 (Bridge Nthbd Lane 1)	Infinite Saturation Flow						Inf	Inf

Full Input Data And Results

Junction: J2: N59 Oughterard Bridge South Side								
Lane	Lane Width (m)	Gradient	Nearside Lane	Allowed Turns	Turning Radius (m)	Turning Prop.	Sat Flow (PCU/Hr) L	Flared Sat Flow (PCU/Hr)
(Bridge Sthbd Lane 1)	Infinite Saturation Flow						line	Inf
$\begin{gathered} \text { J2:2/1 } \\ \text { (N59 East) } \end{gathered}$	3.25	0.00	Y	Arm J1:5 Right Arm J2:4 Ahead	Inf   Inf	96.4 \%   3.6 \%	1940	$1$
J2:3/1 (Church Access) J2:4/1 (Church Access (Jcn Exit only) Lane 1)	3.00	$0.00$   This lane	Y   uses a dire	Arm J3:2 Ahead   Arm J1:5 Left   ly entered Sat	Inf   Inf   ation Flow	$\begin{array}{\|c\|} \hline 60.0 \% \\ \hline 40.0 \% \\ \hline \end{array}$	$\begin{aligned} & 1915 \\ & 1500 \end{aligned}$	$\begin{aligned} & 1915 \\ & 1500 \end{aligned}$


Junction: J3: Station Road								
Lane	Lane Width (m)	Gradient	Nearside Lane	Allowed Turns	Turning Radius (m)	Turning Prop.	Sat Flow (PCU/Hr)	Flared Sat Flow (PCU/Hr)
$\begin{gathered} \text { J3:1/1 } \\ \text { (Station Road Lane 1) } \end{gathered}$	This lane uses a directly entered Saturation Flow						1800	1800
J3:2/1 (N59 Eastbound at Stn Rd Lane 1)	This lane uses a directly entered Saturation Flow						1800	1800
J3:3/1 (N59 Westbound at Stn Rd Lane 1)	Infinite Saturation Flow						Inf	Inf
J3:4/1 (N59 Eastbound Exit only Lane 1) J3:5/1 (Stn Rd Southbound Exit only Lane 1)	Infinite Saturation FlowInfinite Saturation Flow						Inf Inf	Inf Inf

Scenario 1: 'Scenario 1' (FG1: 'AM peak', Plan 1: 'Network Control Plan 1')
Stage Sequence Diagram


## Stage Timings

Stage	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
Duration	20	8	35	20	8	7
Change Point	0	20	30	83	123	143

Full Input Data And Results
Signal Timings Diagram

Full Input Data And Results
Network Layout Diagram

Full Input Data And Results

Item	Lane Description	$\begin{aligned} & \text { Lane } \\ & \text { Type } \end{aligned}$	Controller Stream	Position In Filtered Route	Full Phase	Arrow Phase	Num Greens	Total Green   (s)	Arrow Green (s)	Demand Flow (pcu)	Sat Flow (pcu/Hr)	Capacity (pcu)	Deg Sat   (\%)
Network	-	-	N/A	-	-		-	-	-	-	-	-	187.8\%
J1: N59 Oughterard Bridge North Side	-	-	N/A	-	-		-	-	-	-	-	-	187.8\%
1/1	N59 west Ahead Right	u	N/A	N/A	A		1	8	-	152	1873	104	146.1\%
2/1	L1310 Carrowmanagh Rd Ahead Left	u	N/A	N/A	c		1	8	-	191	1831	102	187.8\%
3/1	N59 West Exit Only	$u$	N/A	N/A	-		-	-	-	137	1800	1800	5.6\%
4/1	L1310 Carrowmanagh Rd Exit Only	u	N/A	N/A	-		-	-	-	247	1800	1800	10.3\%
5/1	Bridge Nthbd Left Right	u	N/A	N/A	-		-	-	-	321	Inf	Inf	0.0\%
$\begin{aligned} & \text { J2: N59 } \\ & \text { Oughterard } \\ & \text { Bridge South } \end{aligned}$ Side	-	-	N/A	-	-		-	-	-	-	-	-	131.2\%
1/1	$\begin{aligned} & \text { Bridge Sthbd Left } \\ & \text { Right } \end{aligned}$	u	N/A	N/A	-		-	-	-	280	Inf	Inf	0.0\%
2/1	N59 East Right Ahead	u	N/A	N/A	B		1	20	-	330	1940	251	131.2\%
3/1	Church Access Ahead Left	u	N/A	N/A	D		1	7	-	10	1915	95	10.6\%
4/1	Church Access (Jcn Exit only)	u	N/A	N/A	-		-	-	-	13	1500		0.6\%
$\begin{array}{\|l\|} \hline \text { J3: Station } \\ \text { Road } \end{array}$	-	-	N/A	-	-		-	-	-	-	-		62.1\%
1/1	$\begin{array}{\|c} \begin{array}{c} \text { Station Road Right } \\ \text { Left } \end{array} \\ \hline \end{array}$	0	N/A	N/A	-		-	-	-	98		$158$	62.1\%
2/1	N59 Eastbound at Stn Rd Ahead Right	O	N/A	N/A	-		-	-	-	285	$1800$	1651	10.4\%

Full Input Data And Results


Full Input Data And Results

Item	Arriving (pcu)	Leaving (pcu)	Turners In Gaps (pcu)	Turners When Unopposed (pcu)	Turners In Intergreen (pcu)	Uniform Delay (pcuHr)	Rand + Oversat Delay (pcuHr)	Storage Area Uniform Delay (pcuHr)	Total Delay (pcuHr)	Av. Delay   Per PCU   (s/pcu)	Max. Back of Uniform Queue (pcu)	Rand + Oversat Queue (pcu)	Mean Max Queue (pcu)
Network	-	-	269	0	0	30.6	113.4	0.0	144.0	-	-	-	-
J1: N59 Oughterard Bridge North Side	-	-	0	0	0	18.9	71.2	0.0	90.2	-	-	-	-
1/1	152	104	-	-	-	7.2	25.5	-	32.6	773.0	9.8	25.5	35.2
2/1	191	102	-	-	-	11.8	45.7	-	57.4	1082.8	15.8	45.7	61.5
3/1	100	100	-	-	-	0.0	0.0	-	0.0	1.1	0.0	0.0	0.0
4/1	185	185	-	-	-	0.0	0.1	-	0.1	1.1	0.0	0.1	0.1
5/1	246	246	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
J2: N59   Oughterard Bridge South Side	-	-	0	0	0	11.6	41.3	0.0	52.9	-	-	-	-
1/1	166	166	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
2/1	330	251	-	-	-	11.4	41.3	-	52.6	574.3	18.8	41.3	60.0
3/1	10	10	-	-	-	0.2	0.1	-	0.3	94.9	0.4	0.1	0.5
4/1	10	10	-	-	-	0.0	0.0	-	0.0	1.2	0.0	0.0	0.0
J3: Station Road	-	-	269	0	0	0.1	0.9	0.0	0.9	-	-	-	-
1/1	98	98	98	0	0	0.1	0.8	-	0.9	32.1	0.9	0.8	1.7
2/1	171	171	171	0	0	0.0	0.1	-	0.1	1.2	0.0	0.1	0.1
3/1	326	326	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
4/1	196	196	-	-	-	0.0	0.0	-	0.0	0.0	0.0	$0.02^{20}$	0.0
5/1	69	69	-	-	-	0.0	0.0	-	0.0	0.0	0.0	$0^{206}$	0.0
C1			PRC for Signalled Lanes (\%): PRC Over All Lanes (\%):		$\begin{aligned} & -108.6 \\ & -108.6 \end{aligned}$	Total Delay for Signalled Lanes (pcuHr): Total Delay Over All Lanes(pcuHr):			Cycle Time (s): 162				

## traffico

# N59 Oughterard Bridge Traffic Management \& Signals Design 

Quality Audit

Stephen Reid Consulting Traffic and Transportation

February 2023

# N59 Oughterard Bridge Traffic Management \& Signals Design 



## Quality Audit

## February 2023

## Notice

This document and its contents have been prepared and are intended solely for Stephen Reid Consulting Traffic and Transportation's information and use in relation to N59 Oughterard Bridge Traffic Management \& Signals Design.
Traffico assumes no responsibility to any other party in respect of or arising out of or in connection with this document and / or its contents.

Document History

JOB NUMBER: 230011		DOCUMENT REF: 210011PT003_QA_Rev_0				
0	Final Issue	MD	CP	MD	MD	14 Feb 2023
Revision	Purpose Description	Originated	Checked	Reviewed	Authorised	Date

## Contents

## Section

1. Introduction ..... 2
1.1 Report Context ..... 2
1.2 Details of Site Inspection ..... 2
1.3 The Road Safety Audit Team ..... 2
1.4 Design Drawings Examined as Part of the Audit Process ..... 2
1.5 Quality Audit Content and Compliance ..... 3
2. Walking, Cycling and Access Audit ..... 4
2.1 Best Practice Guidance ..... 4
2.2 Objectives of the Walking, Cycling and Access Audit ..... 4
2.3 General Accessibility Recommendations ..... 4
2.4 Specific Walking, Cycling and Accessibility Recommendations ..... 5
3. Stage 1 Road Safety Audit Problems ..... 9
3.1 Problem: Registering the Presence of Traffic Signals ..... 9
3.2 Problem: Crossing Length Leading to Drivers Ignoring Signals ..... 9
3.3 Problem: Signals and Signage Restricting Footpath Width ..... 10
4. Audit Team Statement ..... 11
4.1 Certification \& Purpose ..... 11
4.2 Implementation of RSA Recommendations ..... 11
4.3 Road Safety Audit Team Sign-Off ..... 11
5. Responding to the Road Safety Audit ..... 12
5.1 How the Designer Should Respond to the Road Safety Audit ..... 12
5.2 Returning the Completed Feedback Form ..... 12
List of Tables
Table 1.1 - Site Inspection Details ..... 2
Table 1.2 - Audit Team Details ..... 2
Table 1.3 - Designers Drawing List ..... 2
Table 2.1 - Walking, Cycling and Access Audit Summary Table ..... 5
List of Figures
Figure 3.1 - Forward Visibility to Primary Traffic Signal for Left Turners ..... 9
Figure 3.2 - Approximate Line of Pedestrian Crossing ..... 9
Figure 3.3 - Narrow Footpath on N59 Westbound Approach ..... 10
Figure 5.1 - Road Safety Audit Sign-Off and Completion Process ..... 12
Appendices
Appendix A ..... 13
A. 1 Road Safety Audit Feedback Form ..... 13

## 1. Introduction

### 1.1 Report Context

This report describes the findings of a Quality Audit associated with N59 Oughterard Bridge Praffic Management \& Signals Design.

The Audit has been completed by Traffico Ltd. on behalf of Stephen Reid Consulting Traffic and Transportation.

### 1.2 Details of Site Inspection

Date	Daylight / Darkness	Weather \& Road Conditions
Monday 19 ${ }^{\text {th }}$ December 2022	Daylight	Cloudy with damp roads.

Table 1.1 - Site Inspection Details

### 1.3 The Road Safety Audit Team

The members of the Road Safety Audit Team have been listed following:

Status	Name / Qualifications	TII Auditor Reference No:
Audit Team Leader (ATL)	Martin Deegan   BEng(Hons) MSc CEng MIEI	MD101312
Audit Team Member (ATM)	Jason Walsh   BEng (Hons) PCert (RSA) CEng MIEI	JW3362499
Audit Trainee (AT)	-	-

Table 1.2 - Audit Team Details

### 1.4 Design Drawings Examined as Part of the Audit Process

The following drawing(s) were examined as part of the Road Safety Audit (RSA) process:

Drawing No.	Drawing Title	Revision
SRC-286-100	Existing Site Survey	A
SRC-286-101	General Arrangement and Extent of Works	G
SRC-286-102	  New Footpath Layout	G
SRC-286-103	Autoturn Assessment for Articulated Trucks on N59 \& 3 Axle   Coach to / from Schools	G

Table 1.3 - Designers Drawing List

### 1.5 Quality Audit Content and Compliance

Procedure and Scope for Quality Audit
This Quality Audit is undertaken in accordance with Section 5.4.2 of the Design Manual $\begin{aligned} & \text { forb }\end{aligned}$ Roads and Streets. The UK Department for Transport Traffic Advisory Leaflet (TAL) 5/11 h己્刃 been referred to for guidance.

This Quality Audit consists of the following audit sections:

- Walking, Cycling and Access Audit - focusing on accessibility requirements of vulnerable road users (and in particular, those with visual or mobility impairments), and on the movement and place function requirements of pedestrians and cyclists
- Road Safety Audit - focusing on issues relating directly to road safety


## Procedure and Scope Specific to the Road Safety Audit

The Road Safety Audit has been carried out in accordance with the procedures and scope set out in TII publication number GE-STY-01024 - Road Safety Audit.

As part of the road safety audit process, the Audit Team have examined only those issues within the design which relate directly to road safety.

## Compliance with Design Standards

The road safety audit process is not a design check, therefore verification or compliance with design standards has not formed part of the audit process.

## Minimizing Risk of Collision Occurrence

All problems described in this report are considered by the Audit Team to require action in order to improve the safety of the scheme and minimise the risk of collision occurrence.

## 2. Walking, Cycling and Access Audik is oin in

2.1 Best Practice Guidance

This Quality Audit has been carried out in accordance with general best practice guidance set out within the following documents:

- The Disability Act 2005
- Building Regulations 2000, Technical Guidance Document M - Access for People with Disabilities (Department of the Environment, Heritage and Local Government)
- Buildings for Everyone Access and use for all citizens (National Disability Authority)
- Access Auditing of the Built Environment Guidelines (National Disability Authority)
- Traffic Management Guidelines (Irish Government Publications 2003)
- Guidance on the use of Tactile Paving Surfaces: UK Department for Transport


### 2.2 Objectives of the Walking, Cycling and Access Audit

The objectives of this Walking, Cycling and Access Audit are as follows:

- To ensure a high level of accessibility to the development site for all vulnerable road users and, for visually and mobility impaired users
- To ensure that the current and future access needs within the scheme are recognised and developed
- To ensure that advantage is afforded to walkers and cyclists at every opportunity


### 2.3 General Accessibility Recommendations

Following delivery of the Walking, Cycling and Access Audit, the design team should consider all issues raised herein for inclusion into the final design. It is less costly to make the changes now, pre-construction, than later after the scheme has been commissioned.

The client should consider setting up a dedicated access team for the project, responsible for the long-term management of universal access throughout the scheme.

This process should be facilitated by an Access Plan, which is a strategy for improving accessibility developed from the Audit and can ensure that access is an on-going concern and help identify opportunities for change.

The access plan should incorporate planned maintenance programmes, a schedule of works that has been devised to take into account the information in the Audit, processes to allow regular updating of the Audit information and links to maintenance and management procedures.

It should also set out procedures to ensure that when opportunities for access improvement arise, they are recognised.

### 2.4 Specific Walking, Cycling and Accessibility Recomméadations

A summary of the design features, together with recommended actions to be takent during the relevant stage of the design or operation of the scheme have been detailed in the following table.

Table 2.1 - Walking, Cycling and Access Audit Summary Table

I.D.	Location	Feature	Action	When
خ Recommendations to Encourage Walking				
W1	Footpaths within N59   Oughterard   Bridge Traffic   Management   \& Signals   Design	Pedestrian provision \& universal access	Ensure pedestrian environments are logical, continuous, easy to understand and consistent throughout the scheme.	Design Stage
W2	Pedestrian linkage to local roads	Pedestrian provision connections to Bus Stops \& schools	Provide seamless connections onto the roads to connect with schools and Bus Stops and to encourage uptake for bus travel.	Design Stage
W3	Footpaths serving N59 Oughterard Bridge Traffic Management \& Signals Design	Street furniture positioning	Ensure street furniture is carefully positioned to avoid obstruction in footways and to maximise the effective width.	  Operational   Stages
W4	Footpaths serving N59 Oughterard Bridge Traffic Management \& Signals Design	Footpaths and crossing points	Ensure footpaths and crossing points are located on all significant desire lines, where they are safe and convenient to use for all vulnerable road users.	Design Stage
W5	Pedestrian linkage to local roads	Linkage to public roads and footpaths	Access points which cross the works boundary and connect with public thoroughfares should link seamlessly with to accommodate universal access and pedestrian progression to schools and places of worship.	Design \& Operational Stages
W6	Pedestrian   Route Across   Bridge	Pedestrian crossing facilities	The traffic signal phasing should allow sufficient time for pedestrians (including school children and the elderly) to cross the bridge between the segregated footpaths on each side.	  Operational   Stages


$\hat{e}_{Q_{0}}$				
I.D.	Location	Feature	Action	When
\%io Recommendations to Encourage Cycling				
C1	N59   Oughterard   Bridge Traffic Management \& Signals Design \& Monaloe Crescent	Traffic lanes where car and cycling use will be integrated	Appropriate measures should be prescribed which might make it abundantly clear to drivers that the movement of cyclists takes precedence over vehicles. This might be achieved with a gateway treatment, in lane cycle logos or street furniture etc.	Design Stage
C2	Traffic signal control - N59 Oughterard Bridge Traffic Management \& Signals Design	Accommodation of cyclists at traffic signal stop lines	Measures which might assists cyclists to make their way to the front of a traffic queue and accumulate in front of vehicles at a red light should be investigated by the Designer. Encouraging cyclists to gather in front of vehicles (and take ownership of the lane) may assist traffic calming for vehicles shuttling across the structure.	Design Stage
C3	Cycle   Parking -   N59   Oughterard   Bridge Traffic   Management   \& Signals   Design	Cycle Parking \& security	To encourage use and safeguard security, position cycle parking away from isolated areas and close to building entrances which have natural passive surveillance. Consider providing cover over the cycle parking to protect cyclists from the elements where possible.	Design Stage
\$inici Recommendations to Provide for Universal Access \& Accessibility				
A1	Footpaths serving N59 Oughterard Bridge Traffic Management \& Signals Design	Dropped kerbs \& tactile paving	Ensure appropriate dropped kerbs and tactile paving are provided at key crossing points.	Design Stage
A2	Footpaths serving N59 Oughterard Bridge Traffic Management \& Signals Design	Universal Access - footpath types and finishes	Ensure consistency in the types of footpath surface utilised and ensure that the surface provides appropriate contrast with the adjacent road pavement.	Design Stage
A3	Footpaths serving N59 Oughterard Bridge Traffic Management \& Signals Design	Universal Access   - material contrast	Ensure contrasting colours/materials are used to define areas which are meant for sole use by vulnerable road users.	Design Stage


traffico

I.D.	Location	Feature	Action	
A11	Car Parking   Areas - N59   Oughterard   Bridge Traffic   Management   \& Signals   Design	Universal access   to parking	Ensure car parking is accessible, easy to   use, and sufficient parking spaces are   provided within a well-designed   environment to meet the needs of all end   users who might (reasonably) be expected   to use them.	Design Stage
A12	Car Parking   Areas - N59   Oughterard   Bridge Traffic   Management   \& Signals   Design	Disabled parking	Ensure location of designated spaces for   car users with disabilities (if appropriate)   are located as close as possible to the   building access points.	Design Stage
A13	Car Parking   Areas -N59   Oughterard   Bridge Traffic   Management   \& Signals   Design	  breundary   treatment	Ensure that access to/from parked vehicles   is not inhibited by boundary treatments,   trees, hedges, street furniture or structural   features.	Design Stage

## 3. Stage 1 Road Safety Audit Problếñ

### 3.1 Problem: Registering the Presence of Traffic Signals

 Location: Vehicles Turning Left from Station Road to N59 WestboundThe angle of approach for left-turning vehicles from Station Road could result in drivers being offered limited forward visibility to the traffic signals. This could lead to conflicts with vulnerable road users or opposing vehicles on the N59.

Figure 3.1 - Forward Visibility to Primary Traffic Signal for Left Turners


Recommendation
Drivers should be afforded with appropriate forward visibility to the traffic signal heads at this location. This could be coupled with suitable road markings and signage to inform side road drivers that they will be approaching a traffic signal controlled junction.

### 3.2 Problem: Crossing Length Leading to Drivers Ignoring Signals Location: Longitudinal Pedestrian Crossing over Bridge Structure <br> The green time required to service the unusually long pedestrian crossing could lead to unmanageable delays for drivers on the N59 approaches. Frustrated drivers might ignore the red lights, placing pedestrians at risk of conflict with vehicles.

Figure 3.2 - Approximate Line of Pedestrian Crossing


Recommendation
Conspicuous measures which might encourage compliance with the traffic signal operation should be developed by the Designer. Such measures might include robust traffic signage and road markings, vehicle actuation, pedestrian detection, pedestrian count-down signals, enforcement cameras and an education campaign for local stakeholders.

### 3.3 Problem: Signals and Signage Restricting Footpath Wiredth



If not carefully managed, traffic signals and road signage could further reduce the affective width of footpaths. This could lead to pedestrians stepping into the carriageway without warning.

Figure 3.3 - Narrow Footpath on N59 Westbound Approach


## Recommendation

Where pinch points are likely to be created in footpaths, traffic signals and road signage should be carefully relocated to maximise the effective width of the footpath. New street furniture should be positioned away from pinch points, to the rear of the footpath where possible.


We certify that we have examined the drawing listed in Chapter 1 of this Report.

## Sole Purpose of the Road Safety Audit

The Road Safety Audit has been carried out with the sole purpose of identifying any features of the design which could be removed or modified to improve the road safety aspects of the scheme.

### 4.2 Implementation of RSA Recommendations

The problems identified herein have been noted in the Report together with their associated recommendations for road safety improvements.

We (the Audit Team) propose that these recommendations should be studied with a view to implementation.

Audit Team's Independence to the Design Process
No member of the Audit Team has been otherwise involved with the design of the measures audited.

### 4.3 Road Safety Audit Team Sign-Off

## Martin Began

Audit Team Leader
Road Safety Engineering Team
traffic

Jason Walsh
Audit Team Member
Road Safety Engineering Team
traffic

Signed:

Date: $\quad 14^{\text {th }}$ February 2023

Signed:


Date: $\quad 14^{\text {th }}$ February 2023

## 5. Responding to the Road Safety Åerdit

5.1 How the Designer Should Respond to the Road Safety Auddt

The Designer should prepare an Audit Response for each of the recommendations using the Road Safety Audit Feedback Form attached in Appendix A.

When completed, this form should be signed by the Designer and returned to the Audit Team for consideration. See flow-chart following for further description.

## 1. Road Safety Audit Team issue Draft Audit Report to the Designer.

2. Designer \& the Employer Reviews

Audit Report, completes and signs
Feedback Form in Appendix A and returns it to the Audit Team for Review.
3. Road Safety Audit Team reviews

Designers responses, counter-signs
Feedback Form and Finalizes the Audit
Report.

Figure 5.1 - Road Safety Audit Sign-Off and Completion Process

### 5.2 Returning the Completed Feedback Form

The Designer should return the completed Road Safety Audit Feedback Form attached in Appendix A of this report to the following email address:

- Email address: martin@traffico.ie

The Audit Team will consider the Designer's response and reply indicating acceptance or otherwise of the Designers response to each recommendation.

## Triggering the Need for an Exception Report

Where the Designer and the Audit Team cannot agree on an appropriate means of addressing an underlying safety issue identified as part of the audit process, an Exception Report must be prepared by the Designer on each disputed item listed in the audit report.


## Appendix A

A. 1 Road Safety Audit Feedback Form

## Road Safety Audit Feedback Forin

Scheme: N59 Oughterard Bridge Traffic Management \& Signals Design.
Audit Stage: Stage 1 Road Safety Audit
Audit Date: 31st January 2023

Problem   Reference   (Section 2)	Designer Response Section			
	Problem   Accepted   (yes / no )	Recommended   Measure   Accepted   ( yes / no )	Alternative Measures or Comments	Audit Team   Response   Section
2.1	Yes	Yes	Alternative   Measures   Accepted   (yes / no )	


	$\stackrel{P}{Q}_{Q_{0}}$			
Problem Reference (Section 2)	Designer Response Section			Audit Team Response
	Problem Accepted (yes / no )	Recommended Measure   Accepted   ( yes / no )	Alternative Measures or Comments	Alternative Measures Accepted ( yes/no )
			where these could block visibility for traffic exiting from Station Road.   A W042 Traffic Signals Ahead sign is to be installed on each of the signalised arm approaches.   If viewed as appropriate a sign with a supplementary left pointing arrow plate P003L could be installed on Station Road approaching the N59 junction (see below).	
2.2	Yes	Yes		
2.3	Yes	Yes	Existing footpath is 1.6 m wide to west of the Station Road corner. Proposed kerb buildout increases width to 2.0 m (minimum) and there is more than 2.0 m clear width from proposed primary signal pole to the boundary wall. There is a redundant pole (previously a no parking sign) which can be removed during the civil works to build out the kerbline and install signal ducting.	Noted with thanks

[^0]



[^0]:    *The Designer should complete the Designer Response Section above, then fill out the designer details below and return the completed form to the Road Safety Audit Team for consideration and signing.

