TOBIN

Galway County Council

Housing Development at Cosmona, Loughrea, Co. Galway

Engineering Planning Report

Document Cont	rol Sheet
Document Reference	Engineering Report
Client:	Galway County Council
Project Reference	11942

Rev	Description	Author	Date	Reviewer	Date	Approval	Date
PO	Issue for Planning	AO	26/09/2024	SB	26/09/2024	MG	26/09/2024

Disclaimer

 $This \ Document \ is \ Copyright \ of \ Patrick \ J \ Tobin \ \& \ Co. \ Ltd. \ trading \ as \ TOBIN. \ This \ document \ and \ its \ contents \ have \ been$ prepared for the sole use of our client. No liability is accepted by TOBIN for the use of this report, or its contents for any other use than for which it was prepared.

Table of Contents

1.	Int	roduction	3
	1.1	General	3
	1.2	Engineering Information	5
2.	Su	rface Water Drainage	7
	2.1	Existing Storm Drainage	7
	2.2	Proposed Storm Drainage	8
	2.3	Sustainable Urban Drainage Systems	8
	2.4	Soakaway (BRE 365)	9
	2.5	Attenuation Tanks	9
	2.6	Petrol Interceptor	10
3.	W	aste Water Drainage	11
	3.1	Existing Wastewater Drainage	11
	3.2	Proposed Wastewater Drainage	11
	3.3	Pumping Station	11
4.	W	ater Supply	13
	4.1	Existing Water Supply Infrastructure	13
	4.2	Proposed Water Supply Infrastructure	13
5.	Ro	ads Layout	14
6.	Re	ferences	16
Αp	pendi	ces	
Аp	pendix	A Drawing Register	
Αр	pendix	B Causeway Flow Storm Drainage Model & Longsections	
Αр	pendix	C Infiltration Test Results	
Ар	pendix	D Uisce Eireann Confirmation of Feasibility	
Lis	t of Fi	gures	
Fig	gure 19	iite Location - Aerial View (Google Maps)	4
Fig	gure 2 F	Proposed Site Layout	5

TOBIN

1. INTRODUCTION

1.1 GENERAL

TOBIN have been Galway County Council proposes to carry out the following development.

The construction of a new residential development consisting of:

- a) The construction of 56 new housing units, comprising of: including 44 no. houses and 12 no. apartments, comprising of:
 - 44 no. houses, including
 - 16 no. 2 bedroom houses
 - 25 no. 3 bedroom houses
 - 2 no. 4 bedroom houses
 - 1 no. 5 bedroom house
 - 10 no. apartments, including
 - 6 no. 1 bedroom apartments
 - 6 no. 2 bedroom apartments
- b) Varied boundary treatments and landscaping works;
- c) All ancillary site development works and site services necessary to facilitate the proposed development, including an UE pumping station and parking for the existing graveyard adjacent to the west of the site adjacent to a Burial Ground which is a Protected Structure 323 NIAH GA105066.

See below Figure 1 for site Location and Figure 2 for Proposed Site Layout.

Figure 1 Site Location - Aerial View (Google Maps)

Figure 2 Proposed Site Layout

Access to the site is via R350 and 2 vehicle access points via Hazelwood Estate Road, a secondary pedestrian/cycle access will also be provided with Hazelwood Road.

The lands surrounding the site to the south and west are currently primarily greenfield. A burial Ground listed as a protected structure (323-NIAH 3033703) is located to the west of the proposed development. R350 Road is located along the eastern and Hazelwood Road along the northern site boundary.

TOBIN are the consultants appointed to provide Civil, Structural and Traffic engineering design services for the planning stage of this project.

1.2 ENGINEERING INFORMATION

As part of the planning submission for the above proposed development, TOBIN have prepared this Engineering Report to address the following design aspects of the proposed development.

- ✓ Storm Water Drainage
- ✓ Waste Water Drainage
- ✓ Water Supply
- ✓ Road Layout
- ✓ Traffic Management

The following drawings are included outlining the design proposals and a Drawing Register is included in **Appendix A**:

- 11942-2000 Proposed Watermain Layout
- 11942-2001 Proposed Foul Drainage Layout
- 11942-2002 Proposed Storm Water Drainage Layout
- 11942-2003 Proposed SuDS Layout
- 11942-2004 Proposed Roads Layout
- 11942-2005 Proposed Visibility Splays
- 11942-2006 Swept Path Analysis Sht 1 of 3
- 11942-2007 Swept Path Analysis Sht 2 of 3
- 11942-2008 Swept Path Analysis Sht 3 of 3
- 11942-2009 Site Development Details Sheet 1 of 3
- 11942-2010 Site Development Details Sheet 2 of 3
- 11942-2011 Site Development Details Sheet 3 of 3
- 11942-2012 Standard Manhole Details 1 of 2
- 11942-2013 Standard Manhole Details 2 of 2
- 11942-2014 Standard Pipe Bedding Details
- 11942-2015 Standard Watermain Details

2. SURFACE WATER DRAINAGE

Storm water drainage services for the proposed development are considered to include the following:

- ✓ Storm Water Network for internal roads, footpaths, pedestrian areas, and carpark
- ✓ Storm Water Network for roof runoff from the proposed buildings

The storm water drainage design has been designed to cater for surface water runoff from all hardstanding areas. The storm water drainage services have been designed to take account of the requirements of the Department of Environment "Recommendations for Site Development Works for Housing Areas", 1998, the "Greater Dublin Strategic Study" and "Sewers for Adoption" published by WRC, UK.

The storm water drainage network was designed using Causeway Flow Design software and the following parameters formed the basis of the design:

- The surface water run-off is calculated using the Modified Rational Method (Wallingford Procedure),

$Q = 2.78 \times Cv \times Cr \times I \times A$

Where, Q = rate of run-off, l/s

Cv = Volumetric run-off coefficient

Cr = Routing coefficient

I = Intensity of rainfall, mm/hr

A = Impermeable Area, ha

- A design return period of 1 year has been adopted for the sewer network in accordance with good design practice.
- The rainfall intensity is based on rainfall data for Loughrea
- Minimum self-cleansing velocity of 0.75m/s
- M5-60 = 16.4
- Ratio (R) = 0.272

2.1 EXISTING STORM DRAINAGE

It is proposed to discharge wastewater generated by the proposed development to the existing 300mm PCV stormwater line which runs along the R350 Road to the east of the site.

Refer to Drawing 11942–2002 for details of the existing stormwater network.

2.2 PROPOSED STORM DRAINAGE

A dedicated storm water drainage system will be provided to pick up surface water run-off from roofs, carparks and other hardstand areas. Surface water runoff from roads and footpaths throughout the site will be collected by a combination of channel drains and precast concrete gullies with lockable cast iron grating and frame connected to a piped system. The pipe diameter of the new network will range between 150 and a maximum of 300mm and will be laid at gradients varying between 1/60 and 1/200 given the site area and topography.

Surface water drainage is proposed to discharge to the existing storm water drainage network located along the R350 Road located along the eastern site boundary. Discharge from the site will be restricted to greenfield run-off rates.

Prior to discharge to the existing network all surface water will pass through a Class 1 petrol interceptor.

SuDS measures such as rain gardens and swales will be strategically located throughout the development to aid in the storm water management of the site. These measures will assist in preserving the current greenfield runoff on the site. Refer to drawing 11925–2003 for locations of the proposed SuDS measures.

The storm drainage for the entire development has been designed using the Causeway Flow Design Software in accordance with the Recommendations for Site Development Works for Housing Areas and also some of the recommendations of the Greater Dublin Strategic Drainage Study (GDSDS). The details of the Causeway Flow Outputs for the pipe design and associated long sections are outlined at **Appendix B** of this report. Refer to drawing 11942 – 2002 for details of the proposed storm drainage network.

2.3 Sustainable Urban Drainage Systems

The existing site is currently a greenfield site with no storm drainage or SuDS measures in place.

To limit surface water runoff from the site, the surface water drainage for the proposed development will be designed in accordance with the principles of Sustainable Urban Drainage Systems (SuDS) as embodied in the recommendations of the Greater Dublin Strategic Drainage Study (GDSDS). The GDSDS addresses the issue of sustainability by requiring designs to comply with a set of drainage criteria which aim to minimise the impact of urbanisation by replicating the runoff characteristics of the partly brownfield site.

The requirements of SuDS are typically addressed by provision of the following:

- ✓ Interception storage
- ✓ Treatment storage (not required if interception storage is provided)
- ✓ Attenuation storage
- \checkmark Long term storage (if this is not required growth rates should not be applied to Q_{bar})

In the case of the subject site, interception storage can be achieved by implementing swales, rain gardens and attenuation storage tanks. Growth factors will be applied to the allowable discharge for the 100-year event. This means that both treatment storage and long-term storage, neither of which would be practical on this site, are not required. All SuDS measures will

be designed in accordance with the recommendation set out in the EPA's document entitled "Guidance on Authorisation of Discharges to Groundwater 2011".

2.3.1 Water Quality

Water quality is managed in the form of the proposed petrol interceptors. Since spatial restraints limit the use of nature-based SuDS measures specifically for water treatment, the use of a petrol interceptor has been proposed as a general SuDS measure to meet this requirement. In addition, the drainage kerbs and infiltration trench/swale garden combination allow for isolation of hydrocarbons for nature-based treatment within appropriate green zones.

2.3.2 Water Quantity

The use of swales and rain gardens will increase the time to concentration for the network whilst reducing the peak run-off rates. The main drainage system is also designed to achieve the required thresholds in the event of localized exceedance of SuDS measures, or seasonally sensitive capacity reductions, thereby ensuring that greenfield run-off rates are maintained.

2.3.3 Amenity

The proposed filter strips, rain gardens and swales integrate with the broader landscaping strategy to meet this requirement. However, the details of these measures are to be developed during the detailed design stage.

2.3.4 Biodiversity

The landscaping design requires further development in the detailed design stage to accommodate further SuDS measures to leverage opportunities for biodiversity. However, the SuDS measures already proposed support the landscaping measures as might be employed to meet the biodiversity goals of the development.

2.4 SOAKAWAY (BRE 365)

Infiltration testing conducted in October 2022 for the site (**Appendix C**) revealed that at the locations of the proposed development water infiltration was too low to calculate the infiltration rate.

The proposed site is therefore not recommended as suitable for soakaway design and construction.

2.5 ATTENUATION TANKS

It is proposed to install 2 cellular attenuation tanks for the proposed development. One of the units is located centrally within the site, the other in the southeastern corner along the eastern boundary prior to connection to the existing sewer. Hydrobrake manholes control the flow of surface water to allow the attenuation areas fill their capacity.

All cellular storage units will be sized to attenuate the water generated for the largest storage required over a 48-hour storm period with rainfall depths taken for the 100-year return period + 20% for climate change for sliding durations obtained from Met Eireann.

Outputs, including the storage structure information, from Causeway Flow modelling software can be found in **Appendix B**. The proposed cellular unit locations are shown graphically on the proposed drainage layout drawings and a Typical Soakaway/Attenuation detail drawing accompanies this application.

2.6 PETROL INTERCEPTOR

It is proposed to install a Class 1 Bypass Petrol Interceptor upstream of the connection into the existing storm sewer network. The reasoning for this is that the storm water entering the system will include run-off from the roadways and parking areas throughout the site and therefore may have hydrocarbons within their flow. These hydrocarbon pollutants require removal and are not to be discharged back into the environment. The separator has been sized to cater for roads, carparking and footpath areas of the site with an allowance for contributing roof areas.

From the selection tables in the Separator Product Brochure, it is proposed to provide 1 No. Kingspan Klargester (NSBE025) or similar approved bypass separators to cater for the hydrocarbons which may be present in the storm water.

3. WASTE WATER DRAINAGE

The drainage systems including all pipe sizes and gradients have been designed in accordance with the Uisce Eireann Code of Practice for Wastewater Infrastructure. Refer to Drawing 11942-2001 which outlines the details of the existing and proposed wastewater network.

3.1 EXISTING WASTEWATER DRAINAGE

It is proposed to discharge wastewater generated by the proposed development via rising main to the existing Uisce Eireann owned wastewater located underneath the R350 Road.

Refer to Drawing 11942-2001 which outlines the details of the existing wastewater network.

3.2 Proposed Wastewater Drainage

Wastewater generated from the proposed development will outfall to an existing Uisce Eireann owned 225mm foul sewer network located adjacent to the east-northern corner of the site on the R350 Road.

Due to site topography and constraints, it will be necessary for the wastewater generated from dwellings to discharge via a gravity foul sewer to a pumping station. The pumping station is located centrally within the site. A rising main, will pump wastewater from the pumping station to the discharge (decompression) manhole to be located At the junction of the Hazelwood Estate prior to flow via gravity to the existing UE foul network.

The pipework for the wastewater drainage system has been designed to provide six times the dry weather flow in accordance with the Uisce Eireann Code of practice and standard details-Appendix B – Gravity Sewer Design Requirements, section 2.2.5 Domestic Wastewater Peaking Factors.

The wastewater drainage services have been designed to take account of the requirements of the Civil Engineering Specification for the Water Industry (CESWI), subject to the particular requirements applied to it by Uisce Eireann, as outlined in the Uisce Eireann Code of Practice for Wastewater Infrastructure. Other design guidelines adhered to include the Department of Environment "Recommendations for Site Development Works for Housing Areas", 1998, and "Sewers for Adoption" published by WRC, UK.

It is proposed that all pipes will be thermoplastic structured wall pipes with the maximum and minimum pipe sizes being between 150mm and 225mm respectively. The maximum and minimum pipe gradients shall fall between 1/40 and 1/200. All velocities at said gradients will fall within the limits of 0.75m/sec and 3m/sec as set out in Uisce Eireann Code of Practice for Wastewater Infrastructure and "Recommendations for Site Development Works" as published by the Department of Environment.

A confirmation of Feasibility has been obtained from Uisce Eireann and is included in **Appendix D**.

3.3 Pumping Station

The pumping station will be designed in accordance with the requirements set out in the Uisce Eireann Code of Practice for Wastewater Infrastructure (UE-CDS-5030-03). It is proposed to

construct a Type 3 pumping station, as it is serving more than 20 units. It is to be located no closer than 15m from the boundary of the nearest property in accordance with Uisce Eireann requirements.

Uisce Eireann - Code of Practice for Wastewater Infrastructure - Doc ref (UE-CDS_5030-03) section 5.2 General Requirements notes that emergency storage capacity of 24-hours Dry Weather Flow (DWF) is required for smaller developments of up to 250 units.

The pumping station will include a 3.7m wide set-down to allow for an occasional small tanker or service vehicles to be parked outside the pumping station. It is estimated that tanker movements to the site would be minimal and subject to the operational efficiencies of the pumping station.

4. WATER SUPPLY

The proposed watermain layout has been designed in accordance with Uisce Eireann Code of Practice for Watermain Infrastructure UE-CDS-5020-03.

Refer to Drawing 11942-2000 which outlines the details of the existing and proposed water supply network.

4.1 EXISTING WATER SUPPLY INFRASTRUCTURE

According to Uisce Eireann information there is an existing watermain running along the R350 Road located along the eastern site boundary. From this it is proposed to provide a 100mm diameter HDPE SDR17 feed to the site.

4.2 PROPOSED WATER SUPPLY INFRASTRUCTURE

As outlined in Section 4.1, it is proposed to supply water to this development through the existing water supply network in the vicinity of the proposed site.

In accordance with Local authority/Uisce Eireann standards, a water meter and Logging Device (Larson Type) are proposed at the connection into the proposed site. A sluice valve, strainer and 100mm diameter by-pass arrangement are also proposed to allow for possible disconnection of water meters by the Local Authority/ Uisce Eireann.

Hydrants, sluice valves, air valves and scour valves or wash-out hydrants will be positioned within the site as per shown on the layout drawings. All watermains are to be commissioned and pressure tested to Uisce Eireann standards. The typical construction details and the meter details accompany this application as part of the engineering drawings pack.

The "National Guidance Document on the Provision of Water for Fire Fighting", Water UK, Local Government Association, (3rd Edition, Jan 2007), states that Housing developments with units of detached or semidetached houses of not more than two floors should have a water supply capable of delivering a minimum of eight litres per second through any single hydrant.

A flow test should be undertaken at a hydrant located adjacent to the site to establish the achievable flow.

For firefighting purposes, fire hydrants are to be provided within the site to the spacing required by Part B of the Building Regulations including the requirement that hydrants will be provided such the building is within 46 metres from a hydrant.

Any specific requirements as requested by the local fire authority will be incorporated at the detail design stage.

A Confirmation of Feasibility has been obtained for this project and is included in **Appendix D**.

5. ROADS LAYOUT

All internal roads have been designed in accordance with the Design Manual for Urban Roads and Streets (DMURS), May 2019 and the Recommendations for Site Development Works for Housing Areas, 1998. Auto track vehicle swept path analysis has been completed for the proposed site layout for a Large Car, a Refuse Truck, Fire Tender and a small tanker to ensure the vehicles can safely manoeuvre around the site. The swept paths are shown on drawings 11942-2006 to 11942-2009.

As previously noted, the existing site is currently a greenfield site and there are no parking or pedestrian provisions within the site. The proposed development will be accessed through a new junction along R350, 2 vehicle access points and a secondary pedestrian/cycle access via Hazelwood Estate Road. The R350 Road provides a linkage to the town of Loughrea to the south and Road N65 to the north. The proposed site access will be situated within a 50km/h default urban speed zone.

The proposed maximum speed limit within the development is to be 20km/h, with relevant traffic control measures where suitable. Road widths within the development are to be 6.0m wide and 1.8-2m wide footpaths running adjacent.

Road levels for the site have been derived taking cognisance of the existing topography and ground conditions, combined with allowable road gradients. Road makeup shall be in accordance with Galway City Council Taking In-Charge requirements, shown on the typical site works details drawing that accompany this application. The use of raised junctions/crossings and pedestrian crossing points along with strategically positioned drop kerbs and tactile paving will allow for full linkage for visually impaired and less-able pedestrians. Refer to the DMURS 2019 Statement of Consistency for further details on the road's layout. The shared surface shall be finished in different surface material to differentiate them from vehicle priority roads. All roads will include a 1:40 camber and longitudinal gradients of road sections lie between 1:21 and 1:200 to ensure adequate surface water drainage is achieved.

Lockable gullies are located, at a minimum, every 200m² with local low points allowing for double gullies as per Recommendations for Site Development Works for Housing Areas to ensure surface water drainage will not be blocked.

Visibility splay and sightline requirements at the point of vehicular egress are based on a 50 km/h Speed Limit, (Design Speed), of R350 Road and consider Section 4.4.2 and Table 4.2 of the Department of Transport document 'Design Manual for Urban Roads and Streets' (DMURS). The required 45m DMURS visibility sightlines are available for drivers emerging from (Sightlines) and on the approach to the proposed site access junction (Stopping Sight Distance-SSD) as illustrated on the proposed roads layout drawings. Required 14m DMURS visibility splays are also available at internal junctions within the development at the reduced design speed of 20km/h ('Slow Zone' speed limit) and where traffic calming measure enforce slower speeds.

An independent Road Safety Audit has been carried out on the site and the auditor's report is included as an appendix of the Traffic and Transport Assessment Report (TTA), which will accompany this application as a separate document.

6. REFERENCES

Uisce Eireann Code of Practice for Wastewater Infrastructure IW-CDS-5030-03, Revision 2, July 2020

Uisce Eireann Code of Practice for Water Infrastructure IW-CDS-5020-03, Revision 2, July 2020

Design Manual for Urban Roads and Streets, Department of Transport, Tourism and Sport/Department of Housing, Planning and Local Government

National Guidance Document on the Provision of Water for Fire Fighting, 3rd Edition, January 2007, Local Government Association/Water UK

Recommendations for Site Development works for Housing Areas, October 1998, Government of Ireland

Public Health and Plumbing Engineering CIBSE Guide G: 2014, Chartered Institute of Building Services Engineers

Traffic Signs Manual, August 2019, Department of Transport, Tourism and Sport

The SuDS Manual C753, 2015, CIRIA

BRE Digest 365, Building Research Establishment

Appendix A DRAWING REGISTER

Fairgreen House, Fairgreen Road, Galway, Ireland H91AXK8 Tel: +353 (0)91 565211 Fax: +353 (0)91 565398 Web: www.tobin.ie

Document and Drawing Issue Register																
11942 - VHA - Provision of Full Integrated Design Friedm Services for 3.3 Hectare Housing Site Development at																
PLEASE A	ACKNOWLEDGE RECEIPT OF DRAWINGS	ISSU		7												
Reasons: AB - As B	uilt, C - For Construction, CM - For Comment,	ISSUE	ED BY	SB												
	ormation, P - Preliminary, T - For Tender	DA	λΥ	27												
1 - FOI INIC	ormation, P - Preliminary, 1 - For Tender	MOM	NTH	9												
MU - Mult	iple	YE	AR	24												
		ISSUE F	REASON	ı												
DRG NO.	DRAWING/DOCUMENT TITLE	SIZE	SCALE													
11942-2000	Proposed Watermain Layout	A1	As Drawing	P0												
11942-2001	Proposed Foul Drainage Layout	A1	As Drawing	P0												
11942-2002	Proposed Storm Drainage Layout	A1	As Drawing	P0												
11942-2003	Proposed SuDS Layout	A1	As Drawing	P0												
11942-2004	Proposed Roads Layout	A1	As Drawing	P0												
11942-2005	Visibilty Splays	A1	As Drawing	P0												
11942-2006	Vehicle Swept Paths Sheet 1	A1	As Drawing	P0												
11942-2007	Vehicle Swept Paths Sheet 2	A1	As Drawing	P0												
11942-2009	Site Development Details - Sheet 1	A1	As Drawing	P0												
11942-2010	Site Development Details - Sheet 2	A1	As Drawing	P0												
11942-2011	Site Development Details - Sheet 3	A1	As Drawing	P0												
11942-2012	Standard Pipe Bedding Details	A1	As Drawing	P0												
11942-2013	Standard Manhole Details - Sheet 1	A1	As Drawing	P0												
11942-2014	Standard Manhole Details - Sheet 2	A1	As Drawing	P0												
11942-2015	Standard Watermain Details	A1	As Drawing	P0												
	DISTRIBUTION			+d -	Download a	and Ha		+h - En ail, h - I					D, d -	By Do	wnloa	ad, e
Coffey Consulting	Engineering															
	Barry Coffey			d												
Galway City Counc	eil															
	Eithne Murphy			d												
TOBIN		n				,						,				
	Micheál Geraghty			d												
Tom McNamara & I	I	П														
	Gerard O Malley			d												
Vincent Hannon Ar		П														
	Brian Fahy			d												
	Emmett McNamara			d												
	ELECTRONIC FORMATS						1									
	pdf			х												
	DOCUMENT AN	ID DRAW	ING IS	SUE	REGIS	STEF	?									

Design Settings

Rainfall Methodology **FSR** Return Period (years) 1 Additional Flow (%) 0

FSR Region Scotland and Ireland

M5-60 (mm) 16.400 Ratio-R 0.272

CV 0.750

Time of Entry (mins) 5.00

Maximum Time of Concentration (mins) 15.00 Maximum Rainfall (mm/hr) 55.0 Minimum Velocity (m/s) 1.00 Connection Type **Level Soffits**

Minimum Backdrop Height (m) 1.000 Preferred Cover Depth (m) 1.200 Include Intermediate Ground

Enforce best practice design rules x

Nodes

Name	Area	T of E	Cover	Diameter	Easting	Northing	Depth
	(ha)	(mins)	Level	(mm)	(m)	(m)	(m)
			(m)				
S1	0.067	5.00	80.851	1200	561682.609	717274.680	0.560
S2	0.083	5.00	80.532	1350	561686.743	717250.128	0.532
S3	0.077	5.00	80.071	1350	561694.352	717198.132	1.405
S4	0.029	5.00	79.419	1350	561745.543	717204.280	1.121
S5	0.066	5.00	80.525	1350	561667.244	717194.619	1.645
S6	0.045	5.00	79.988	1350	561737.332	717143.526	1.372
S7	0.114	5.00	79.359		561748.511	717228.846	1.191
S8	0.123	5.00	79.930	1350	561755.780	717281.815	1.489
S9	0.025	5.00	78.720	1350	561815.198	717220.993	0.882
S10	0.123	5.00	79.392	1350	561822.517	717286.000	0.500
S11			78.500	1350	561809.610	717185.109	0.844
S12	0.109	5.00	79.424	1350	561801.310	717147.449	1.402
S14	0.031	5.00	81.813	1200	561655.466	717152.319	1.856
S17	0.091	5.00	79.856	1350	561739.064	717155.927	1.377
S18			80.165	1350	561692.967	717205.576	1.311
S19	0.050	5.00	80.949	1350	561690.273	717149.323	1.575
S20	0.000	5.00	78.768	1350	561817.255	717242.465	0.823
S21			78.430	1350	561816.844	717183.996	0.800
S22			79.013	1350	561806.103	717185.622	1.185
S23	0.000	5.00	79.171	1350	561819.586	717261.715	1.429

<u>Links</u>

Name	US Node	DS Node	Length (m)	ks (mm) / n	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)	T of C (mins)	Rain (mm/hr)
S14-S19	S14	S19	34.936	0.600	79.957	79.374	0.583	59.9	225	5.34	39.1
S19-S17	S19	S17	49.236	0.600	79.374	78.554	0.820	60.0	225	5.83	37.8
S6-S17	S6	S17	12.521	0.600	78.616	78.554	0.062	202.0	225	5.23	39.4
S17-S4	S17	S4	48.785	0.600	78.479	78.298	0.181	269.5	225	6.86	35.5
S1-S2	S1	S2	24.898	0.030	80.291	80.050	0.241	103.3	500	5.30	39.2

Name	Vel	Cap	Flow	US	DS	Σ Area	Σ Add	Pro	Pro
	(m/s)	(I/s)	(I/s)	Depth	Depth	(ha)	Inflow	Depth	Velocity
				(m)	(m)		(I/s)	(mm)	(m/s)
S14-S19	1.692	67.3	3.3	1.631	1.350	0.031	0.0	34	0.886
S19-S17	1.691	67.2	8.3	1.350	1.077	0.081	0.0	53	1.158
S6-S17	0.916	36.4	4.8	1.147	1.077	0.045	0.0	55	0.638
S17-S4	0.791	31.5	20.9	1.152	0.896	0.217	0.0	134	0.845
S1-S2	1.380	1380.3	7.1	0.060	-0.018	0.067	0.0	37	0.320

CAUSEWAY

File: 11942 - Cosmona Model

Network: Anna Orzechowska

28/08/2024

Page 2

Name	US Node	DS Node	Length (m)	ks (mm) / n	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)	T of C (mins)	Rain (mm/hr)
S2-S18	S2	S18	44.985	0.030	80.000	79.600	0.400	112.5	500	5.87	37.8
S18-S3	S18	S3	7.572	0.030	78.854	78.741	0.113	67.0	225	6.08	37.2
S5-S3	S5	S3	27.334	0.600	78.880	78.741	0.139	196.6	225	5.49	38.7
S3-S4	S3	S4	51.559	0.030	78.666	78.298	0.368	140.1	300	7.79	33.7
S4-S7	S4	S 7	24.745	0.600	78.298	78.174	0.124	199.6	300	8.17	33.0
S8-S7	S8	S7	53.466	0.600	78.441	78.174	0.267	200.2	225	5.97	37.5
S7-S9	S7	S9	65.944	0.600	78.168	77.838	0.330	199.8	300	9.26	31.4
S10-S23	S10	S23	24.461	0.030	78.892	78.671	0.221	110.7	500	5.31	39.2
S23-S20	S23	S20	19.391	0.030	78.042	77.945	0.097	199.9	225	6.24	36.9
S20-S9	S20	S9	21.570	0.030	77.945	77.838	0.107	201.6	225	7.28	34.6
S9-S11	S9	S11	36.317	0.600	77.838	77.656	0.182	199.5	300	9.81	30.4
S12-S22	S12	S22	38.473	0.600	78.022	77.828	0.194	198.3	225	5.69	38.2
S22-S11	S22	S11	3.544	0.600	77.828	77.781	0.047	75.4	225	5.73	38.1
S11-S21	S11	S21	7.320	0.600	77.656	77.630	0.026	281.5	375	9.92	30.3

Name	Vel	Cap	Flow	US	DS	Σ Area	Σ Add	Pro	Pro
	(m/s)	(I/s)	(I/s)	Depth	Depth	(ha)	Inflow	Depth	Velocity
				(m)	(m)		(I/s)	(mm)	(m/s)
S2-S18	1.323	1322.9	15.4	0.032	0.065	0.150	0.0	57	0.395
S18-S3	0.598	23.8	15.1	1.086	1.105	0.150	0.0	131	0.634
S5-S3	0.929	36.9	6.9	1.420	1.105	0.066	0.0	65	0.713
S3-S4	0.501	35.4	26.7	1.105	0.821	0.293	0.0	195	0.550
S4-S7	1.109	78.4	48.2	0.821	0.885	0.539	0.0	170	1.164
S8-S7	0.920	36.6	12.5	1.264	0.960	0.123	0.0	91	0.837
S7-S9	1.108	78.4	66.0	0.891	0.582	0.776	0.0	212	1.237
S10-S23	1.334	1333.5	13.1	0.000	0.000	0.123	0.0	52	0.379
S23-S20	0.346	13.8	12.3	0.904	0.598	0.123	0.0	166	0.391
S20-S9	0.345	13.7	11.5	0.598	0.657	0.123	0.0	159	0.387
S9-S11	1.109	78.4	76.2	0.582	0.544	0.924	0.0	240	1.257
S12-S22	0.925	36.8	11.3	1.177	0.960	0.109	0.0	86	0.817
S22-S11	1.507	59.9	11.3	0.960	0.494	0.109	0.0	65	1.159
S11-S21	1.075	118.7	84.7	0.469	0.425	1.033	0.0	235	1.164

Pipeline Schedule

Link	Length (m)	Slope (1:X)	Dia (mm)	Link Type	US CL (m)	US IL (m)	US Depth (m)	DS CL (m)	DS IL (m)	DS Depth (m)
S14-S19	34.936	59.9	225	Circular	81.813	79.957	1.631	80.949	79.374	1.350
S19-S17	49.236	60.0	225	Circular	80.949	79.374	1.350	79.856	78.554	1.077
S6-S17	12.521	202.0	225	Circular	79.988	78.616	1.147	79.856	78.554	1.077
S17-S4	48.785	269.5	225	Circular	79.856	78.479	1.152	79.419	78.298	0.896
S1-S2	24.898	103.3	500	1:3 Swale	80.851	80.291	0.060 80.5		80.050	-0.018
	Link	US Node	Dia (mm)	Node Type	MH Type	DS Node	Dia (mm)	Node Type	MH Type	
	S14-S19	S14	1200	Manhole	Adoptable		` '	Manhole	Adoptable	2

1350 Manhole Adoptable

1350 Manhole Adoptable

1350 Manhole Adoptable

1350 Manhole Adoptable

Adoptable S17

Adoptable S4

Adoptable S2

1350 Manhole Adoptable S17

1350 Manhole

1350 Manhole

1200 Manhole

S19-S17 S19

S6

S17

S1

S6-S17

S17-S4

S1-S2

Network:

Anna Orzechowska 28/08/2024

Pipeline Schedule

Link	Length	Slope	Dia	Link	US CL	US IL	US Dept		DS IL	DS Depth
	(m)	(1:X)	(mm)	Type	(m)	(m)	(m)	(m)	(m)	(m)
S2-S18	44.985	112.5	500	1:3 Swale	80.532	80.000	0.03	2 80.165	79.600	0.065
S18-S3	7.572	67.0	225	Circular	80.165	78.854	1.08	6 80.071	78.741	1.105
S5-S3	27.334	196.6	225	Circular	80.525	78.880	1.42	0 80.071	78.741	1.105
S3-S4	51.559	140.1	300	Circular	80.071	78.666	1.10		78.298	0.821
S4-S7	24.745	199.6	300	Circular	79.419	78.298	0.82	1 79.359	78.174	0.885
S8-S7	53.466	200.2	225	Circular	79.930	78.441	1.26	4 79.359	78.174	0.960
S7-S9	65.944	199.8	300	Circular	79.359	78.168	0.89	1 78.720	77.838	0.582
S10-S23	24.461	110.7	500	1:3 Swale	79.392	78.892	0.00	0 79.171	78.671	0.000
S23-S20	19.391	199.9	225	Circular	79.171	78.042	0.90	4 78.768	77.945	0.598
S20-S9	21.570	201.6	225	Circular	78.768	77.945	0.59	8 78.720	77.838	0.657
S9-S11	36.317	199.5	300	Circular	78.720	77.838	0.58	2 78.500	77.656	0.544
S12-S22	38.473	198.3	225	Circular	79.424	78.022	1.17	7 79.013	77.828	0.960
S22-S11	3.544	75.4	225	Circular	79.013	77.828	0.96	0 78.500	77.781	0.494
S11-S21	7.320	281.5	375	Circular	78.500	77.656	0.46	9 78.430	77.630	0.425
	Link	US	Dia	Node	МН	DS	Dia	Node	МН	
		Node	(mm)	Type	Туре	Node	(mm)	Туре	Type	
	S2-S18	S2	1350	Manhole	Adoptable		1350	Manhole	Adoptabl	e
	S18-S3	S18	1350	Manhole	Adoptable		1350	Manhole	Adoptabl	
	S5-S3	S5	1350	Manhole	Adoptable		1350	Manhole	Adoptabl	
	S3-S4	S3	1350	Manhole	Adoptable		1350	Manhole	Adoptabl	
	S4-S7	S4	1350	Manhole	Adoptable			Junction		
	S8-S7	S8	1350	Manhole	Adoptable	e S7		Junction		
	S7-S9	S 7		Junction		S9	1350	Manhole	Adoptabl	e
	S10-S23	S10	1350	Manhole	Adoptable	e S23	1350	Manhole	Adoptabl	e
	S23-S20	S23	1350	Manhole	Adoptable		1350	Manhole	Adoptabl	e
	S20-S9	S20	1350	Manhole	Adoptable		1350	Manhole	Adoptabl	
	S9-S11	S9	1350	Manhole	Adoptable		1350	Manhole	Adoptabl	
	S12-S22	S12	1350	Manhole	Adoptable		1350	Manhole	Adoptabl	
	S22-S11	S22	1350	Manhole	Adoptable	e S11	1350	Manhole	Adoptabl	e
	S11-S21	S11	1350	Manhole	Adoptable	e S21	1350	Manhole	Adoptabl	e

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections		Link	IL (m)	Dia (mm)
S1	561682.609	717274.680	80.851	0.560	1200	P				
						v o	0	S1-S2	80.291	500
S2	561686.743	717250.128	80.532	0.532	1350		1	S1-S2	80.050	500
						0	0	S2-S18	80.000	500
S3	561694.352	717198.132	80.071	1.405	1350	2	1	S5-S3	78.741	225
						1 ->0	2	S18-S3	78.741	225
							0	S3-S4	78.666	300

File: 11942 - Cosmona Model Network:

Anna Orzechowska 28/08/2024 Page 4

Manhole Schedule

Node	Easting	Northing	CL	Depth	Dia	Connections	6	Link	IL	Dia
	(m)	(m)	(m)	(m)	(mm)				(m)	(mm)
S4	561745.543	717204.280	79.419	1.121	1350	}	1	S3-S4	78.298	300
							2	S17-S4	78.298	225
						1-4				
						2	0	S4-S7	78.298	300
S5	561667.244	717194.619	80.525	1.645	1350					
						○→ 0				
							0	S5-S3	78.880	225
S6	561737.332	717143.526	79.988	1.372	1350	0				
							0	S6-S17	78.616	225
S7	561748.511	717228.846	79.359	1.191		1	1	S8-S7	78.174	225
							2	S4-S7	78.174	300
						→0				
						2	0	S7-S9	78.168	300
S8	561755.780	717281.815	79.930	1.489	1350					
						<u> </u>				
						o o	0	S8-S7	78.441	225
S9	561815.198	717220.993	78.720	0.882	1350	1	1	S20-S9	77.838	225
						2	2	S7-S9	77.838	300
						Y				
						0	0	S9-S11	77.838	300
S10	561822.517	717286.000	79.392	0.500	1350					
						<u> </u>				
						o v	0	S10-S23	78.892	500
S11	561809.610	717185.109	78.500	0.844	1350	2	1	S22-S11	77.781	225
						1	2	S9-S11	77.656	300
						→ 0				
							0	S11-S21	77.656	375
S12	561801.310	717147.449	79.424	1.402	1350	}				
							0	S12-S22	78.022	225
S14	561655.466	717152.319	81.813	1.856	1200					
						\longrightarrow_0				
							0	S14-S19	79.957	225
S17	561739.064	717155.927	79.856	1.377	1350	↑	1	S6-S17	78.554	225
						2	2	S19-S17	78.554	225
						-	_			
						1	0	S17-S4	78.479	225
S18	561692.967	717205.576	80.165	1.311	1350	1	1	S2-S18	79.600	500
						\(\frac{1}{2} \)	_		70 5 = :	
	EC4 500 575	747440 000	00.0	4	4055	j ö	0	S18-S3	78.854	225
S19	561690.273	717149.323	80.949	1.575	1350		1	S14-S19	79.374	225
						1 ->0				
							_	640.54=	70.07	225
						I	0	S19-S17	79.374	225

Patrick J TOBIN & Company Ltd | File: 11942 - Cosmona Model | Page 5

Network:

Anna Orzechowska

28/08/2024

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connection	s	Link	IL (m)	Dia (mm)
S20	561817.255	717242.465	78.768	0.823	1350	\downarrow	1	S23-S20	77.945	225
						o ^V	0	S20-S9	77.945	225
S21	561816.844	717183.996	78.430	0.800	1350		1	S11-S21	77.630	375
						1				
S22	561806.103	717185.622	79.013	1.185	1350	→ 0	1	S12-S22	77.828	225
						1	0	S22-S11	77.828	225
S23	561819.586	717261.715	79.171	1.429	1350	\$	1	S10-S23	78.671	500
						•	0	S23-S20	78.042	225

Simulation Settings

Rainfall Methodology	FSR	Analysis Speed	Normal
FSR Region	Scotland and Ireland	Skip Steady State	х
M5-60 (mm)	16.400	Drain Down Time (mins)	60
Ratio-R	0.272	Additional Storage (m³/ha)	0.0
Summer CV	0.750	Check Discharge Rate(s)	Х
Winter CV	0.840	Check Discharge Volume	X

Storm Durations										
15	60	180	360	600	960	2160	4320	7200	10080	
30	120	240	480	720	1440	2880	5760	8640		

Return Period (years)	Climate Change (CC %)	Additional Area (A %)	Additional Flow (Q %)
1	0	0	0
30	10	0	0
100	20	0	0

Node S11 Online Hydro-Brake® Control

Flap Valve	Х	Objective	(HE) Minimise upstream storage
Replaces Downstream Link	\checkmark	Sump Available	\checkmark
Invert Level (m)	77.656	Product Number	CTL-SHE-0134-8000-0844-8000
Design Depth (m)	0.844	Min Outlet Diameter (m)	0.150
Design Flow (I/s)	8.0	Min Node Diameter (mm)	1200

Node S7 Online Hydro-Brake® Control

Flap Valve	Χ	Objective	(HE) Minimise upstream storage
Replaces Downstream Link	\checkmark	Sump Available	\checkmark
Invert Level (m)	78.168	Product Number	CTL-SHE-0149-1100-1191-1100
Design Depth (m)	1.191	Min Outlet Diameter (m)	0.225
Design Flow (I/s)	11.0	Min Node Diameter (mm)	1200

Patrick J TOBIN & Company Ltd | File: 11942 - Cosmona Model | Page 6

Network:

Anna Orzechowska

28/08/2024

Node S11 Depth/Area Storage Structure

Base Inf Coefficient (m/hr)	0.00000	Safety Factor	2.0	Invert Level (m)	77.656
Side Inf Coefficient (m/hr)	0.0000	Porosity	ი 96	Time to half empty (mins)	

Depth	Area	Inf Area	Depth	Area	Inf Area	Depth	Area	Inf Area
(m)	(m²)	(m²)	(m)	(m²)	(m²)	(m)	(m²)	(m²)
0.000	390.4	0.0	0.700	390.4	0.0	0.701	0.0	0.0

Node S7 Soakaway Storage Structure

Base Inf Coefficient (m/hr)	0.00000	Invert Level (m)	78.168	Depth (m)	0.640
Side Inf Coefficient (m/hr)	0.00000	Time to half empty (mins)		Inf Depth (m)	
Safety Factor	2.0	Pit Width (m)	20.800	Number Required	1
Porosity	0.96	Pit Length (m)	25.600		

Node S2 Link Infiltration Storage Structure

Base Inf Coefficient (m/hr)	0.00000	Porosity	1.00	Link	S1-S2
Side Inf Coefficient (m/hr)	0.00000	Invert Level (m)	80.050		
Safety Factor	2.0	Time to half empty (mins)			

Node S18 Link Infiltration Storage Structure

Base Inf Coefficient (m/hr)	0.00000	Porosity	1.00	Link	S2-S18
Side Inf Coefficient (m/hr)	0.00000	Invert Level (m)	79.600		
Safety Factor	2.0	Time to half empty (mins)			

Node S23 Link Infiltration Storage Structure

Base Inf Coefficient (m/hr)	0.00000	Porosity	1.00	Link	S10-S23
Side Inf Coefficient (m/hr)	0.00000	Invert Level (m)	78.671		
Safety Factor	2.0	Time to half empty (mins)			

File: 11942 - Cosmona Model v1.1_AO.pfd

Anna Orzechowska

Page 1

Network: 28/08/2024

Node Name	S14	S19	S17	S4 S7		S9	S11S21
A4 drawing Hor Scale 1500 Ver Scale 100 Datum (m) 74.000							
Link Name	S14-S19	S19-S17	S17-S4	S4-S7	S7-S9	S9-S11	S11
Section Type	225mm	225mm	225mm	300mm	300mm	300mm	375
Slope (1:X)	59.9	60.0	269.5	199.6	199.8	199.5	281
Cover Level (m)	81.813	80.949	79.856	79.419		78.720	78.500
Invert Level (m)			78.479	78.298 78.298 78.298 78.174 78.174 78.168			77.656
Length (m)	34.936	49.236	48.785		65.944	36.317	7.3

File: 11942 - Cosmona Model v1.1_AO.pfd Network:

Page 2

Anna Orzechowska 28/08/2024

Node Name	S6 S17
A4 drawing	
Hor Scale 1500	
Ver Scale 100	
Datum (m) 73.000	
Link Name	S6-S1
Section Type	225m
Slope (1:X)	202.0
Cover Level (m)	79.988
	6 79.
Invert Lovel (m)	
Invert Level (m)	78.616
	78
Longth (m)	
Length (m)	12.52
	Flow+ v10.7 Copyright © 1988-2024 Causeway Technologies Ltd

Node Name

A4 drawing

Hor Scale 1500 Ver Scale 100

Datum (m) 74.000 Link Name

Section Type

Cover Level (m)

Invert Level (m)

Length (m)

Slope (1:X)

Patrick J TOBIN & Company Ltd

S1

S2

File: 11942 - Cosmona Model v1.1 AO.pfd Network:

28/08/2024

Page 3

Anna Orzechowska S18S3 **S4** S2-S18 S18 S3-S4 /500x50(\ /500x500mm 1:3.(225 300mm 140.1 112.5 67.0 80.165 79.419 79.600 78.954 78.666 78.298

44.985

7.5

51.559

S1-S2

103.3

24.898

80.532

80.050

80.851

80.291

File: 11942 - Cosmona Model v1.1_AO.pfd Network:

Anna Orzechowska

Page 4

28/08/2024 S5 S3 Node Name A4 drawing Hor Scale 1500 Ver Scale 100 Datum (m) 74.000 S5-S3 Link Name Section Type 225mm 196.6 Slope (1:X) Cover Level (m) 80.525 80.071 78.880 Invert Level (m) 78.741 Length (m) 27.334

Flow+ v10.7 Copyright © 1988-2024 Causeway Technologies Ltd

File: 11942 - Cosmona Model v1.1_AO.pfd Network: Anna Orzechowska Page 5

28/08/2024

Node Name	S8 S7
A4 drawing	
7	
Hor Scale 1500	
Ver Scale 100	
Ver source 200	
Datum (m) 73.000	
Link Name	S8-S7
Section Type	225mm
Slope (1:X)	200.2
Cover Level (m)	
	79.359
	67
Invert Lovel (m)	
Invert Level (m)	78.441
	$ \mathring{\aleph} $
Length (m)	53.466

File: 11942 - Cosmona Model v1.1_AO.pfd Network:

Anna Orzechowska 28/08/2024

Page 6

Node Name	\$10 \$23 \$20 \$9
Node Name	510 523 520 55
A A almannina a	
A4 drawing	
Hor Scale 1500	
Ver Scale 100	
Ver Scare 100	
Datum (m) 73.000	
Link Name	S10-S23 S23-S20 S20-S9
Section Type	√ 500x50(225mm 225mm
Slope (1:X)	110.7 199.9 201.6
Cover Level (m)	
	79.392 79.171 78.768 78.720
Invert Level (m)	2 7 2 2 8
	78.892 78.042 77.945 77.838
	78
Length (m)	24.461 19.391 21.570
	27.701 15.551 21.570

File: 11942 - Cosmona Model v1.1_AO.pfd Network:

Anna Orzechowska 28/08/2024 Page 7

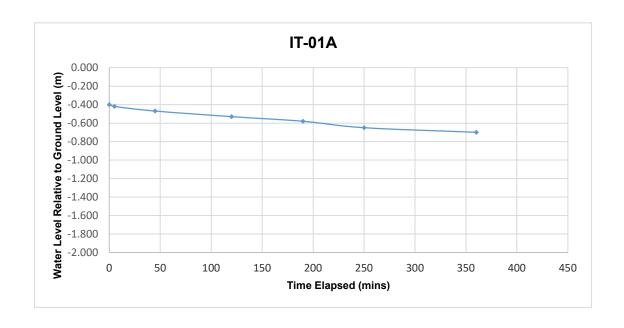
Node Name	S12 S3S11
NOUE NAME	312 3,221
A4 drawing Hor Scale 1500 Ver Scale 100	
Datum (m) 73.000	
Link Name	S12-S22 S
Section Type	225mm 2
Slope (1:X)	198.3 7
Cover Level (m)	79.424
Invert Level (m)	78.022 77.828 77.828 77.6282 62.629
Length (m)	38.473 3.

Flow+ v10.7 Copyright © 1988-2024 Causeway Technologies Ltd

Appendix C Infiltration Test Results

IT-01A Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 2.30m x 1.00m 1.70m (L x W x D) Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176


Email: info@gii.ie Web: www.gii.ie

Date	Time	Water level (m bgl)
16/05/2022	0	-0.400
16/05/2022	5	-0.420
16/05/2022	45	-0.470
16/05/2022	120	-0.530
16/05/2022	190	-0.580
16/05/2022	250	-0.650
16/05/2022	360	-0.700

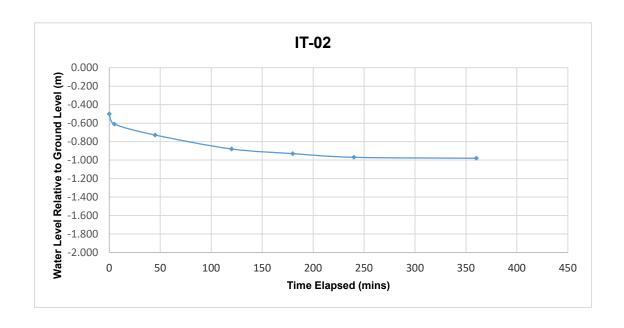
*Soakaway failed - Pit backfilled

 Start depth
 Depth of Pit
 Diff
 75% full
 25%full

 0.40
 1.700
 1.300
 0.725
 1.375

IT-02 Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 3.30m x 1.10m 1.50m (L x W x D) Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176

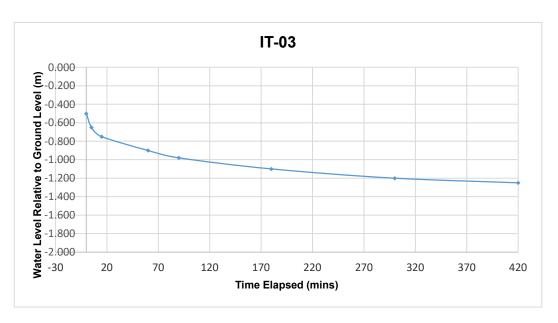

Email: info@gii.ie Web: www.gii.ie

Date	Time	Water level (m bgl)	
16/05/2022	0	-0.500	
16/05/2022	5	-0.610	
16/05/2022	45	-0.730	
16/05/2022	120	-0.880	
16/05/2022	180	-0.930	
16/05/2022	240	-0.970	
16/05/2022	360	-0.980	
		*Soakaway failed - Pit bad	ckf

*Soakaway failed - Pit backfilled

 Start depth
 Depth of Pit
 Diff
 75% full
 25%full

 0.50
 1.500
 1.000
 0.75
 1.25



Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

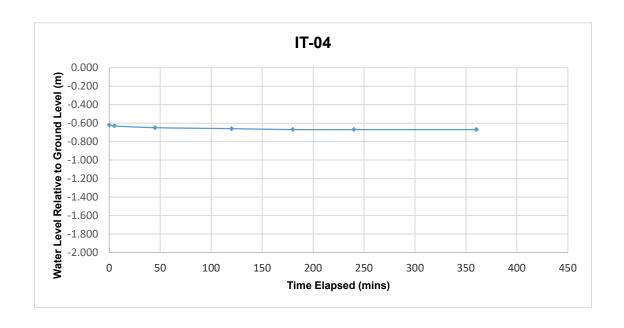
Tel: 01 601 5175 / 5176 Email: info@gii.ie Web: www.gii.ie

IT-03 Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 3.60m x 1.10m 1.50m (L x W x D)

Date	Time		er level bgl)		
16/05/2022	0	-0.500			
16/05/2022	5	-0.650			
16/05/2022	15	-0.750			
16/05/2022	60	-0.900			
16/05/2022	90	-0.980			
16/05/2022	180	-1.100			
16/05/2022	300	-1.200			
16/05/2022	420	-1.250	*data extra	apolated	
			*pit filled of *possible	once bedrock at base	of pit
Start depth	Depth of Pit		Diff	75% full	25%full
0.50	1.500		1.000	0.75	1.25
Length of pit (m) Width of pit (m) 1.500 1.100				75-25Ht (m) 0.500	Vp75-25 (m3) 0.83
Tp75-25 (from graph) (s)		24240		50% Eff Depth 0.500	ap50 (m2) 4.25
f =	8.008E-06	m/s		2.300	0

IT-04 Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 3.40m x 1.10m 1.60m (L x W x D) Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176


Email: info@gii.ie Web: www.gii.ie

Date	Time	Water level (m bgl)
16/05/2022	0	-0.620
16/05/2022	5	-0.630
16/05/2022	45	-0.650
16/05/2022	120	-0.660
16/05/2022	180	-0.670
16/05/2022	240	-0.670
16/05/2022	360	-0.670

*Soakaway failed - Pit backfilled

 Start depth
 Depth of Pit
 Diff
 75% full
 25%full

 0.50
 1.600
 1.100
 0.775
 1.325

IT-01

IT-01

IT-01

IT-01

IT-01A

IT-01A

IT-01A

IT-01A

IT-01A

IT-01A

IT-02

IT-02

IT-02

IT-02

IT-02

IT-02

IT-03

IT-03

IT-03

IT-03

IT-03

IT-04

IT-04

IT-04

IT-04

IT-04

IT-04

Appendix D UISCE EIREANN CONFIRMATION OF FEASIBILITY

CONFIRMATION OF FEASIBILITY

Gift Mzembe

Tobin Consulting Engineers Fairgreen House Fairgreen Road Co. Galway H91AXK8

25 September 2024

Uisce Éireann Bosca OP 448 Oifig Sheachadta r

Oifig Sheachadta na Cathrach Theas Cathair Chorcaí

Uisce Éireann PO Box 448 South City Delivery Office Cork City

www.water.ie

Our Ref: CDS24006357 Pre-Connection Enquiry R350, Cosmona, Loughrea, Co. Galway

Dear Applicant/Agent,

We have completed the review of the Pre-Connection Enquiry.

Uisce Éireann has reviewed the pre-connection enquiry in relation to a Water & Wastewater connection for a Housing Development of 56 unit(s) at R350, Cosmona, Loughrea, Galway, (the **Development**).

Based upon the details provided we can advise the following regarding connecting to the networks;

- Water Connection
- Feasible without infrastructure upgrade by Uisce Éireann
- Wastewater Connection
- Feasible without infrastructure upgrade by Uisce Éireann
- We note your proposal includes the provision of an onsite pumping station arrangement. Please refer to Section 5 of our Wastewater Codes of Practice, which outlines our requirements for the provision of pumping stations and rising mains.

This letter does not constitute an offer, in whole or in part, to provide a connection to any Uisce Éireann infrastructure. Before the Development can be connected to our network(s) you must submit a connection application and be granted and sign a connection agreement with Uisce Éireann.

As the network capacity changes constantly, this review is only valid at the time of its completion. As soon as planning permission has been granted for the Development, a completed connection application should be submitted. The connection application is available at www.water.ie/connections/get-connected/

Where can you find more information?

Section A - What is important to know?

This letter is issued to provide information about the current feasibility of the proposed connection(s) to Uisce Éireann's network(s). This is not a connection offer and capacity in Uisce Éireann's network(s) may only be secured by entering into a connection agreement with Uisce Éireann.

For any further information, visit www.water.ie/connections, email newconnections@water.ie or contact 1800 278 278.

Yours sincerely,

Dermot Phelan

Connections Delivery Manager

Section A - What is important to know?

What is important to know?	Why is this important?
Do you need a contract to connect?	Yes, a contract is required to connect. This letter does not constitute a contract or an offer in whole or in part to provide a connection to Uisce Éireann's network(s).
	Before the Development can connect to Uisce Éireann's network(s), you must submit a connection application and be granted and sign a connection agreement with Uisce Éireann.
When should I submit a Connection Application?	A connection application should only be submitted after planning permission has been granted.
Where can I find information on connection charges?	Uisce Éireann connection charges can be found at: https://www.water.ie/connections/information/charges/
Who will carry out the connection work?	 All works to Uisce Éireann's network(s), including works in the public space, must be carried out by Uisce Éireann*. *Where a Developer has been granted specific permission and has been issued a connection offer for Self-Lay in the Public Road/Area, they may complete the relevant connection works
Fire flow Requirements	 The Confirmation of Feasibility does not extend to fire flow requirements for the Development. Fire flow requirements are a matter for the Developer to determine. What to do? - Contact the relevant Local Fire Authority
Plan for disposal of storm water	The Confirmation of Feasibility does not extend to the management or disposal of storm water or ground waters.
	 What to do? - Contact the relevant Local Authority to discuss the management or disposal of proposed storm water or ground water discharges.
Where do I find details of Uisce Éireann's network(s)?	Requests for maps showing Uisce Éireann's network(s) can be submitted to: datarequests@water.ie

What are the design requirements for the connection(s)?	•	The design and construction of the Water & Wastewater pipes and related infrastructure to be installed in this Development shall comply with the Uisce Éireann Connections and Developer Services Standard Details and Codes of Practice, available at www.water.ie/connections
Trade Effluent Licensing	•	Any person discharging trade effluent** to a sewer, must have a Trade Effluent Licence issued pursuant to section 16 of the Local Government (Water Pollution) Act, 1977 (as amended).
	•	More information and an application form for a Trade Effluent License can be found at the following link: https://www.water.ie/business/trade-effluent/about/
		**trade effluent is defined in the Local Government (Water Pollution) Act, 1977 (as amended)

