

PROPOSED HOUSING DEVELOPMENT AT GORT MHAOILIR, ATHENRY, CO. GALWAY

SERVICES DESIGN REPORT

CLIENT. GALWAY COUNTY COUNCIL

PROJECT NO. 24181-A

DOCUMENT NO. 24181-A-SDS-XX-RP-C-0001-01

DATE APRIL 2025

DOCUMENT TITLE SHEET

Client: Galway County Council, Aras An Chontae, Galway, Co. Galway, H91 H6KX.

Proiect

Description: The proposed development at Gort Mhaoilir, Athenry Co. Galway. The construction of 43no.

> units (compromising; 14no 2-Bedroom 4-Person Units; 11no 3-Bed 5-Person Units; 4no 3-Bed 4-Person Units; 1no 3-Bed 6-Person Unit; 1no 5-Bed 9-Person Units; 6no 2-Bed 1 Person duplex units and 6no 1-Bed 2 Person duplex units) and connection to existing

services together with all ancillary site development works.

Project. No. 24181-A

DISCLAIMER

This Document is Copyright of (Structural Design Solutions) Ltd., Consulting Structural & Civil Engineers. This document and its contents have been prepared for the sole use of our named client and no liability is accepted by SDS (Structural Design Solutions) Ltd., Consulting Structural & Civil Engineers for the use of this report, or its contents for any other use than for which it was prepared.

Copyright: © SDS (Structural Design Solutions) Ltd., Consulting Structural & Civil Engineers 2025.

Email: info@structuraldesign.ie

Tel: +353 (0)1 6877480 Tel: +34 662556212

Web: https://www.structuraldesign.ie/

DOCUMENT CONTROL SHEET

PROJECT No:	24181-A					
PROJECT NAME:	Proposed Housing Development at Cullairbaun, Athenry Co. Galway.					
DOCUMENT REF:	P:\2024\24181 - Galway CC-PKA - Athenry Housing Scheme\Design\2 - Civil Design\02 Cullairbaun - Service Design Report					
REVISION	DATE	DESCRIPTION	Service			
			PREPARED	CHECKED	ISSUED	
01	18/04/2025	INITIALS:	MW	CD	CD	
		DATE:	18/04/2025	18/04/2025	18/04/2025	
			PREPARED	CHECKED	ISSUED	
		INITIALS:				
		DATE:				
			PREPARED	CHECKED	ISSUED	
		INITIALS:				
		DATE:				
			PREPARED	CHECKED	ISSUED	
		INITIALS:	THEITHE	OFFECKED	133025	
		DATE:				
			PREPARED	CHECKED	ISSUED	
		INITIALS:				
		DATE:				
	1	•	1			
			PREPARED	CHECKED	ISSUED	
		INITIALS:				
		DATE:				

SDS - CIVIL, BUILDING & STRUCTURAL ENGINEERS

Head Office: Unit 9, N5 Business Park, Castlebar, Co. Mayo, F23 E283

Tel: +353 (0)94 9034914

Dublin: Silverdale, Old Swords Road, Santry, Dublin 9 D09 CA24.

London: Bridge House, 25-27 The Bridge, Wealdstone, Harrow, HA3 5AB. Tel: +44 (0)20 30266724

—Spain: Calle Virgen de Guadalupe,44. Übeda, 23400, Jaén. España.

Tel: +34 662556212

Email: info@structuraldesign.ie Web: https://www.structuraldesign.ie/

TABLE OF CONTENTS

1	IN	STRUCTION	
2		ROJECT DETAILS	
3		TE LOCATION, SITE DESCRIPTION	
4		ACKGROUND SURVEYS	
•	4.1.1		
	4.1.2		
5	FI	OOD RISK	_
Э			
	5.1	Historic Flooding	4
	5.2	Flood Maps	4
	5.3	Mitigating Risks	5
6	I.C	OCAL AUTHORITY	
7		JRFACE WATER STRAGETY	
/		HIERARCHY OF DISPOSAL	
	7.1	HIERARCHY OF DISPOSAL	5
	7.2	COMPLINACE WITH SuDS PRINCIPLES	
	7.2.1	Compliance with C573 SuDS Manual	
	7.2.2	SuDS Management Train	7
	7.3	SUSTAINABLE URBAN DRAINAGE SYSTEMS	8
	7.3.1	RAINWATER HARVESTING	8
	7.3.2	GREEN ROOFS	8
	7.3.3	SOAKAWAYS	8
	7.3.4	SWALES	8
	7.3.5	TREE PITS	8
	7.3.6	PERVIOUS PAVEMENTS	8
	7.3.7	GEO-CELLULAR / MODULAR SYSTEMS	9
	7.3.8	PONDS / RAIN GARDENS / INFILTRATION BASINS	g
	7.3.9	EXISTING SURFACE WATER	g
	7.4	PROPOSED SURFACE WATER COLLECTION SYSTEM	g
	7.4.1	OUTFLOW FROM SITE	
	7.4.2	SURFACE WATER ATTENUATION SYSTEM	10
8	FC	DUL EFFLUENT	10

SDS - CIVIL, BUILDING & STRUCTURAL ENGINEERS

Email: info@structuraldesign.ie

Head Office: Unit 9, N5 Business Park, Castlebar, Co. Mayo, F23 E283 Dublin: Silverdale, Old Swords Road, Santry, Dublin 9 D09 CA24. London: Bridge House, 25-27 The Bridge, Wealdstone, Harrow, HA3 5AB. Tel: +44 (0)20 30266724 Spain: Calle Virgen de Guadalupe,44. Úbeda, 23400, Jaén. España. Tel: +34 662556212

Tel: +353 (0)94 9034914 Tel: +353 (0)1 6877480 Web:

8.1	PROPOSED FOUL SEWER SYSTEM	10
8.2	WASTEWATER LOADING RATES	10
9	Potable Water Supply	11
9.1	Existing Water Supply	11
9.2	Proposed Water Supply	11
9.3	Fire Hydrants	12
10	SUMMARY AND CONCLUSIONS	12
APPEN	DIX A – TOPGRAPHICAL SURVEY	13
	DIX B – SITE INVESTIGATION REPORT	
	DIX C – MICRODRAINAGE OUTPUTS	
APPEN	DIX D – MET ÉIREANN RAINFALL RETURN PERIOD DATA	16
APPFN	DIX E – UISCE EIREANN PRE-CONNECTION ENQUIRY	17

Head Office: Unit 9, N5 Business Park, Castlebar, Co. Mayo, F23 E283

Dublin: Silverdale, Old Swords Road, Santry, Dublin 9 D09 CA24.

London: Bridge House, 25-27 The Bridge, Wealdstone, Harrow, HA3 5AB. Tel: +34 (0)20 30266724

Spain: Calle Virgen de Guadalupe,44. Übeda, 23400, Jaén. España.

Tel: +34 662556212

Email: info@structuraldesign.ie

Web:

Tel: +353 (0)94 9034914

1 INSTRUCTION

SDS Design Engineers have been appointed by the Client Galway County Council, to prepare a Services Design Report to accompany a Planning Application to Galway County Council for the proposed development, Gort Mhaoilir, Athenry Co. Galway.

2 PROJECT DETAILS

The proposed development at Gort Mhaoilir, Athenry, Co. Galway comprises of the development of residential dwellings

The proposed development comprises of the following:

- Formation of three new development entrances
- The construction of 43no. units (compromising; 14no 2-Bedroom 4-Person Units; 11no 3-Bed 5-Person Units; 4no 3-Bed 4-Person Units; 1no 3-Bed 6-Person Unit; 1no 5-Bed 9-Person Units; 6no 2-Bed 1 Person duplex units and 6no 1-Bed 2 Person duplex units)
- all ancillary site development works

Figure 2.1 shows the proposed site layout plan for the new development.

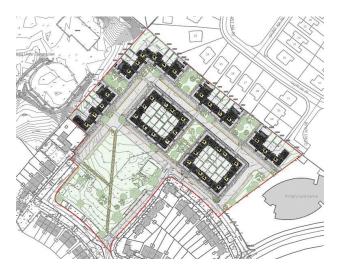


Figure 2.1 – Proposed Site Layout Plan

3 SITE LOCATION, SITE DESCRIPTION

The application site is a greenfield site located in the townland of Raheen in Athenry Co. Galway. (Figure 3.1). the site is located on the northeast edge of the current Gort Mhaoilir housing estate, next to the Gort Mhaoilir Road, on the southwest edge of the Gort na Ri estate, next to the L3105(Raheen Road) and on the east edge of the Athenry Primary Care Facility. The site has an area of approximately 1.8 hectares (18,435.39m² | 4.55 acres). This application includes all the required drawings for the drainage and Sustainable urban Drainage Design Systems (SuDS), foul, and watermain works.

Figure 3.1 - Site Location (image courtesy of Google Maps)

Figure 3.2 – Site location at Gort Mhaoilir, Athenry Co. Galway *(image courtesy of Google*

Figure 3.3 – Areal view of proposed site (image courtesy of Google Maps

4 BACKGROUND SURVEYS

4.1.1 Site Topography

A topographical survey was conducted by Apex Surveys in October 2024. The existing site falls from north to south with a gradient of approximately 1:81. The proposed runoff from the site will mimic the existing topography of the site. Topographical survey of the existing site is presented in Appendix A.

4.1.2 GROUND CONDITIONS

In order to assertain the existing ground counditions a site investigation was carried out by Site Investigations Ireland Ltd on the November 2024. The site investigation includes the following elements:

- 7 No. Trial Pits
- 6 No. Boreholes
- 5 No. Plate Tests
- 5 No. Soakaway Tests
- 1 No. Silt Trench

Figure 4.1 below shows the extend of the site investigation. Soil stratification was detrmined from TPO2, TPO4, TPO5, TPO6, & TPO7 topsoil overlying grey slightly sandy gravelly silty CLAY. Made ground was identified at TPO1 & TPO3. Infiltration testing was carried out in accrodance with BRE Digest 365 *Soakway Design*. Site testing yielded poor infiltration rates as expected due to the presence of CLAY. According to the GSI, the exsiting site is underlain by limestone. Refer to Appendix B for Site Investigations Ireland site investigation report.

Figure 4.1 Site investigation locations (Source: Site Investigations Ireland LTD)

5 FLOOD RISK

To establish if there is a risk of flooding to the proposed development and its location a desktop-based flood risk study was undertaken. As part of this study, several informative reports, studies, and records were reviewed to determine if risk of flooding was an issue. The following sources of information was used in order to determine if the proposed site poses a flood risk:

Historic flood maps and reports from OPW (www.floodinfo.ie)

- Western Catchment Flood Risk Assessment and Management (CFRAM)
- Galway County Council Development Plan 2022-2028.

5.1 Historic Flooding

Figure 5.1 below shows the past flood events within 2.0 km zone of Athenry. Flooding was noted in December 2015; the extent of the flooding is unknown.

Figure 5.1 – Past flood events within 2.0Km of proposed site (Source: www.floodinfo.ie)

5.2 Flood Maps

Based on a review of the Western Catchment Flood Risk Assessment and Management (CFRAM) study it can be noted that proposed site is located within Flood Zone C (where the probability of flooding from rivers and the sea is low (less than. 0.1% or 1 in 1000 for both river and coastal flooding). Figure 5.2 below shows the flood map for the proposed site.

Figure 5.2 – Flood Map (Source: County Mayo Strategic Flood Risk Assessment 2022)

5.3 Mitigating Risks

The proposed storm network strategy will pose a minimal risk to the proposed site and surrounding area. Thus, the following mitigating measures include:

- 1. The proposed drainage network including the SuDS features which shall be maintained on a regular basis to reduce the risk of a blockage.
- 2. The runoff from the site is discharged to the existing surface water network with a hydrobrake at a restricted flow rate of 9.0/s.
- 3. SuDS features are designed in accordance with Greater Dublin Strategic Drainage Study recommendations (1 in 100-year flood event plus 30% climate change due to global warming).

6 LOCAL AUTHORITY

Galway County Council will be provided with the relevant drawings and the associated design calculations for the services proposed for this development for consideration.

7 SURFACE WATER STRAGETY

The following section outlines the hierarchy of options when considering the removal and disposal of surface water from site, before outlining a host of potential sustainable urban drainage system (SuDS) techniques considered when designing the surface water collection system for the proposed site. The proposed surface strategy was designed in accordance with the following guidelines/polices:

- The SUDS Manual (C754,2015)
- Galway County Council Development Plan 2022-2028.
- Greater Dublin Strategic Drainage Study (GDSDS)

It is proposed that SuDS techniques are implemented wherever possible to manage surface water runoff from the development. Surface water management proposals for the site have been articulated to mimic the natural drainage patterns of the existing site.

7.1 HIERARCHY OF DISPOSAL

Generally, when designing a proposed surface water collection system, the philosophy of the design should be to prioritise the below methods of discharging surface water run off as much as reasonably practicable, from 1 (most desirable) to 5 (least desirable):

- 1. Collect for Re-Use
- 2. into the ground (infiltration),
- 3. To a surface waterbody,
- 4. To a surface water sewer, highway drain, or other drainage systems,
- 5. To a combined sewer.

Table 6.1 below shows a summary of the hierarchy of disposal for the proposed development. The surface water hierarchy of disposal will be based on a priority level 4 due to site constraints.

Table 6.1: Hierarchy of Disposal

	Priority Level	Discharge Location	Availability Y/N	Comments
	1	Collect for Use	N	Rainwater harvesting is deemed unpracticable due to the low water demand.
Hierarchy	2	Into the ground - Infiltration	N	Infiltration testing was carried out and results show that the poor infiltration rates and therefore infiltration has been disregarded.
	3	To a Surface Waterbody	N	There are no surface waterbodies close to this site and therefore discharge to a surface waterbody has been disregarded
	4	Discharge to a surface water sewer, highway drain, or another drainage system	Υ	Discharge to an existing local Authority storm network.
	5	Discharge to a combined sewer	N	According to Uisce Eireann records a combined sewer is not present.

1. COLLECT FOR Re-USE

The low water demand for the proposed development does not warrant rain harvesting system as it would involve pumping of water which would outweigh the cost saving and therefore the scheme does not include collection for reuse.

2. INTO THE GROUND - INFILTRATION

Infiltration testing was carried out on 5 no. trial pits in accordance with BRE Digest 365 and yielded poor infiltration rates. As a result of this, such findings consequently make infiltration an unviable option for the surface water treatment of the proposed development, therefore making controlled discharge and storage the proposed treatment option.

3. TO A SURFACE WATERBODY

There are no surface water bodies located in close proximity to this site therefore, this scheme does not include discharge to a surface waterbody in its scheme.

4. DISCHARGE TO A SURFACE WATER, HIGHWAY DRAIN, OR ANOTHER DRAINAGE SYSTEM

An existing surface water network runs in the existing Gort Mhaoilir estate road at the southwest of the proposed site. This existing network will be utilised to serve the proposed development.

5. DISCHARGE TO A COMBINED SEWER

According to Uisce Eireann records a combined sewer is not present near the site.

7.2 COMPLINACE WITH SuDS PRINCIPLES

7.2.1 Compliance with C573 SuDS Manual

The C573 SuDS Manual explains that the primary function of SuDS measures is to protect watercourses from any impact due to the new development. However, SuDS can also improve the quality of life in a new development and urban spaces by making them more vibrant, visually attractive, sustainable and more resilient to change. This document explains the wider social context of SuDS and how SuDS can deliver high quality drainage while supporting urban areas to cope better with sever rainfall both now and in the future. There four pillars of SuDS include:

- 1. Water Quantity (mitigate flood risk & protect natural water cycle)
- 2. Water Quality (manage the quality of the runoff to prevent pollution)
- 3. Amenity (create and sustain better places for people)
- 4. Biodiversity (create and sustain better places for nature)

7.2.2 SuDS Management Train

The SuDS measures proposed are usually linked in series, and this is commonly known as a SuDS Management Train, (SMT). The SMT ensures that surface runoff is captured, conveyed, stored, intercepted, and removed of pollutant correctly and efficiently before it is discharged back into the surrounding watercourse/network. This approach will ensure that the most effective measures are utilised in the correct sequence throughout the site. Table 26.7 (Figure 7.1) (CIRIA, SuDS Manual 2015) demonstrates the effectiveness of each SuDS measure along the SMT.

	Indicative suitability of SuDS components within the Management Train								
26.7	SuDS component	Interception ¹	Close to source/ primary treatment	Secondary treatment	Tertiary treatment				
	Rainwater harvesting	Υ							
	Filter strip	Y	Y						
	Swale	Υ	Υ	Y					
	Filter drain	Υ		Υ					
	Permeable pavement	Υ	Υ						
	Bioretention	Υ	Υ	Y					
	Green roof	Y	Y						
	Detention basin	Y	Y	Y					
	Pond	3	Y ²	Υ	Y				
	Wetland	3	Y ²	Υ	Y				
	Infiltration system (soakaways/ trenches/ blankets/basins)	Y	Y	Y	Y				
	Attenuation storage tanks	Y							
	Catchpits and gullies		Y						
	Proprietary treatment systems		Ys	Ys	Ys				

Figure 7.1 CIRIA C573 SuDS Manual Table (Source: The SUDS Manual C754,2015)

7.3 SUSTAINABLE URBAN DRAINAGE SYSTEMS

The following section outlines the potential SuDS techniques considered for the proposed site, with proposals such as green roofs, Soakways, swales, and modular systems all being discussed herein.

7.3.1 RAINWATER HARVESTING

Rainwater harvesting (RWH) is the collection of rainwater runoff for use. Runoff can be collected from roofs and other impermeable areas, stored, treated (where required) and then used as a supply water for domestic, commercial and/or institutional properties. As previously discussed RWH will be disproportionate in terms of cost and function with regards to the proposed development features (toilet, sinks etc.) Therefore, rainwater harvesting has been disregarded for this design.

7.3.2 GREEN ROOFS

Green roofs comprise a multi-layered system that covers the roof of a building or podium structure with vegetation cover, over a drainage layer. They are designed to intercept and retain precipitation, reducing the volume of run-off and attenuating peak flows. Due to the A-frame roof for the proposed dwellings green roofs have been disregarded.

7.3.3 SOAKAWAYS

Soakaways are square or circular excavations either filled with rubble or lined with brickwork, precast concrete or polyethylene rings/perforated storage structures surrounded by granular backfill. They can be grouped and linked together to drain large areas including highways. The supporting structure and backfill can be substituted by modular geo-cellular units. Soakaways provide storm water attenuation, storm water treatment and groundwater recharge. Soakaways have been disregarded due to poor infiltration rates encountered during site testing.

7.3.4 SWALES

Swales are linear vegetated drainage features in which surface water can be stored or conveyed. They can be designed to allow infiltration, where appropriate. They should promote low flow velocities to allow much of the suspended particulate load in the storm water runoff to settle out, thus providing effective pollutant removal. Swales have not been considered for this development.

7.3.5 TREE PITS

Tree pits are beneficial for bioretention as they intercept precipitation, allow water to evaporate from relief surfaces, facilitate infiltration and groundwater recharge due to their root systems, provide shade, and provide further amenity and biodiversity benefits. However, with alternative methods of surface water treatment being proposed site-wide, tree pits have been disregarded for this development.

7.3.6 PERVIOUS PAVEMENTS

Pervious pavements provide a pavement suitable for pedestrian and/or vehicular traffic while allowing rainwater to infiltrate through the surface and into the underlying layers. The water is temporarily stored

between infiltration to the ground, reuse or discharge to a watercourse or other drainage system. Pavements with aggregate sub-bases can provide good water quality treatment. When permeable paving for car parking bays is used, the stone sub-base not only stores and slows down the rate of discharge, but also raises the water quality. Pervious pavements has been disregarded due to maintenance and the high cost involved.

7.3.7 GEO-CELLULAR / MODULAR SYSTEMS

Modular plastic geo-cellular systems with a high void ratio can be used to create a below ground storage structure. Modular tanks can be used for runoff attenuation but require silt trap protection and a suitable means of access for cleaning and inspection. A geo-cellular system has been adopted as an attenuation system with an attenuation tank of 452m3 and this will provide adequate storage for the proposed site.

7.3.8 PONDS / RAIN GARDENS / INFILTRATION BASINS

Ponds can provide both storm water attenuation and treatment. They are designed to support emergent and submerged aquatic vegetation along their shoreline. Runoff from each rain event is detained and treated in the pool. The retention time promotes removal of silt through sedimentation and the opportunity for biological uptake mechanisms to reduce nutrient concentrations. As the proposed site is residential and ponds have not been considered as it would pose a risk of drowning.

7.3.9 EXISTING SURFACE WATER

Currently, there is existing surface water infrastructure serving the proposed site to the southwest of the proposed development. Refer to Appendix A for Topo Survey. The surface water from the proposed site will be discharged to this existing network.

7.4 PROPOSED SURFACE WATER COLLECTION SYSTEM

The proposal for this development is to provide a new surface water collection network, collecting surface water run-off through roof gutters, & downpipes.

The surface water is routed directly into the proposed surface water network towards SW06 where it will pass through a klargester NSBE020 petrol and oil separator before entering the proposed attenuation tank in the southwest corner of the site. A hydrobrake is to be located in SW MH 08 which will restrict the outflow from the site, limiting the surface water flow from the site to a discharge of 9.0 l/s

7.4.1 OUTFLOW FROM SITE

A HydroBrake Optimum by Hydro International (or similar equivalent) will be provided within proposed surface water manhole SW 08 to limit the outflow as outlined above. Refer to drawing no drawing 24181-A-3023-PL2 for proposed discharge location.

7.4.2 SURFACE WATER ATTENUATION SYSTEM

As previously mentioned, the surface water attenuation system includes a Graf EcoBloc attenuation system. In total, this SuDS feature provides a cumulative surface water storage volume of approx. 452m3. This has been designed to provide storage for the surface water generated in a 1 in 100-year rainfall event, plus an allowance of 30% to cater for predicted climate change as per GDSDS requirements. For calculations regarding surface water attenuation system design, please see Appendix C. Rainfall return period data was utilised from Met Eireann, which is viewable in Appendix D.

PROPOSED SUDS STRATEGY

The proposed SuDS features will be integrated into the surface water drainage network for the proposed development, with the main objective of controlling the quantity of surface water runoff, managing the quality of runoff to prevent pollution, and creating sustaining local ecosystems. The proposed SuDS strategy for the site include the following:

- 1 No. Graf EcoBloc Attenuation Tank The proposed attenuation tank shall assist with providing optimal surface water storage on site.
- 1 No. Hydrobrake The proposed hydrobrake shall restrict the discharge from the site into the existing surface water network.
- 1 No. Petrol Interceptor The proposed class 1 petrol interceptors shall cleanse the surface water prior to discharging into the existing surface water network.

8 FOUL EFFLUENT

The proposed development will be serviced by 2 separate foul sewer pipes. These separate 150mm & 225mm uPVC foul sewer pipes will connect into existing foul sewer (225mm dia.) networks identified at the south corner of the site. For further illustrations of the proposed foul network and the connections to the existing foul network please see drawing 24181-A-3022-PL2.

8.1 PROPOSED FOUL SEWER SYSTEM

It is proposed to use a gravity sewer for the new development. A 150mm uPVC foul main between FW MH 01 will flow to FW MH 02 where it will be discharged into an existing 225mm foul sewer. This will serve the southeast side of the proposed development. A separate 225mm foul will service the east of the site where it will discharge into FW MH 05 and from here discharge into an existing FW MH. The north of the site will also be serviced by a 225mm pipe and will also discharge into the same existing FW MH. The new foul sewer system will be constructed within the site in accordance with the following:

- BS EN 752:2008 Drain & Sewer Systems Outside Buildings,
- Building Regulations TGD Part H Drainage and Wastewater Disposal.
- IW Standard Details

8.2 WASTEWATER LOADING RATES

The estimated wastewater discharge rates are summarised for both residential and commercial are shown in Table 8.1 below.

Table 8.1 - Estimated Foul Demand

Residential/Commercial Foul Demand						
Use	No. of Units	Occupancy Rate (persons/dwelling)	Population (P)	Average daily domestic demand (I/day)	Average Flow (I/s)	Peak Flow (I/s)
Residential/ commercial	43	2.7	116.1	17,415	0.201	1.26

The overall daily wastewater loading is 17,415 litres/day or 17.415m³ day. As mentioned above, the proposed foul sewer system will be connected to the existing foul sewer network to the south of the proposed development. Additionally, it must be noted that a pre-connection application has been submitted to Irish Water for this proposed development, with the corresponding reference number for this application being CDS24009066. Refer to Appendix E for pre-connection enquiry application.

9 Potable Water Supply

9.1 Existing Water Supply

Following the review of the Topo survey completed by Apex surveys there is an existing 100mm uPVC watermain situated in the footpath across the road on the south side of the proposed development. This can be seen in Appendix A.

9.2 Proposed Water Supply

The proposed development will be connected to the existing public watermain via 100mm dia which runs along the southern boundary of the proposed application site. The water demand is calculated in accordance with Code of Practice for Water Infrastructure, Connections and Developer Services, Design & Construction Requirements for Self-Lay Developments, July 2020 (Revision 2)', Section 3.7.2. The total peak average flow for the residential use will be 0.222 l/s with a peak flow of 1.23l/s.

The proposed connection for the proposed development will be made in accordance with Irish Water Standard Details for Non-Mechanical Meter Chamber (40-250mm diameter): Ref. STD-W-26-Rev 03. Please refer to drawing 24181-A-3024-PL2 for the location and details of the proposed watermains network and fire hydrants proposed for this new site layout. A pre-connection application has been submitted to Uisce Eireann for this proposed development, with the corresponding reference number for this application being CDS24009066.

Table 9.1 - Estimated Water Demand

Residential/Commercial Water Demand						
Use	No. of Units	Occupancy Rate (persons/dwelling)	Population (P)	Average daily domestic demand (I/day)	Average Flow (I/s)	Peak Flow (I/s)
Residential/ commercial	43	2.7	116.1	19,155	0.222	1.23

9.3 Fire Hydrants

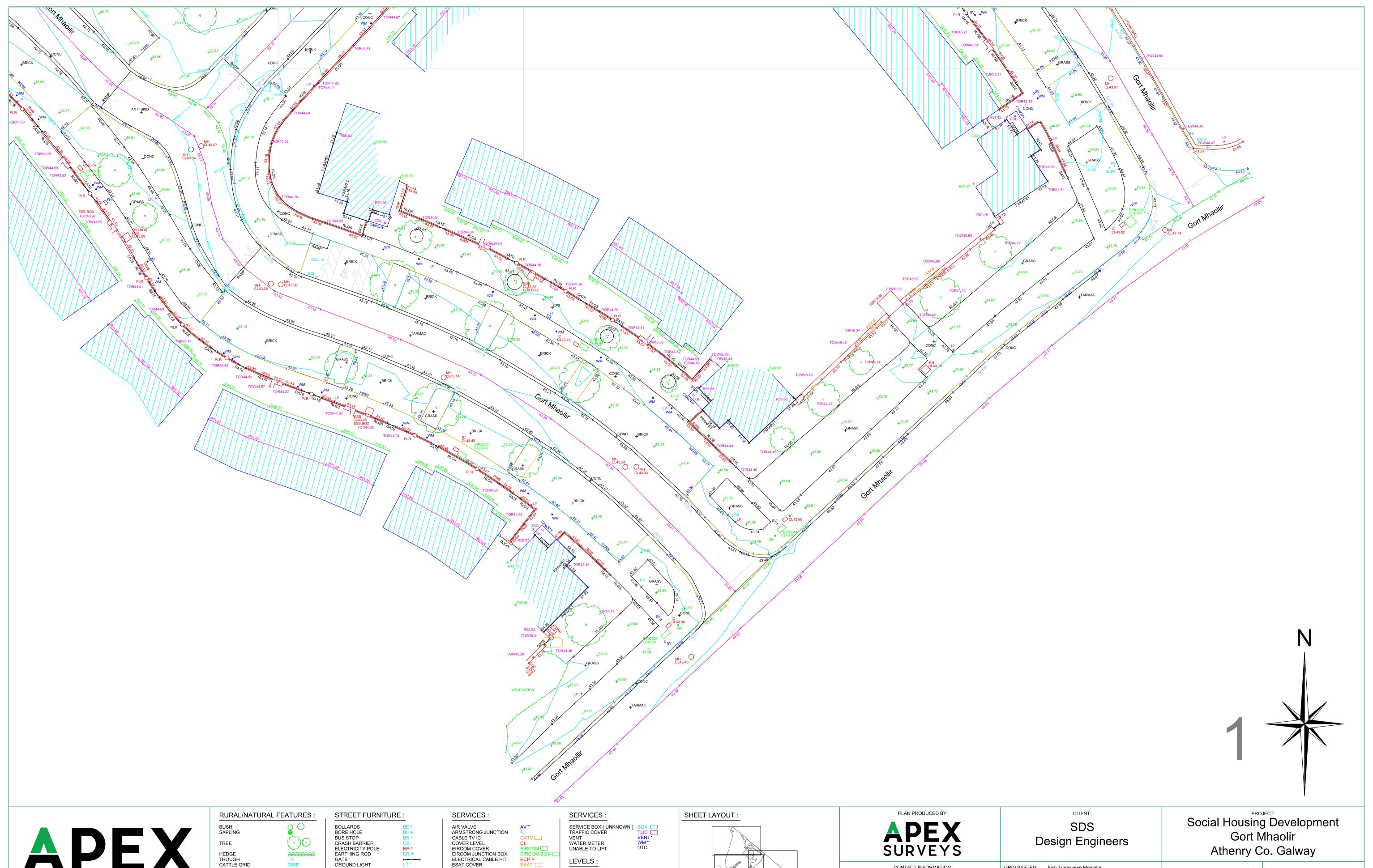
It is proposed to use 13 No. fire hydrants on the loop main. Hydrants shall comply with the requirements of BS 750:2012 and shall be installed in accordance with Irish Waters Code of Practice and Standard Details.

10 SUMMARY AND CONCLUSIONS

SURFACE WATER

The proposed surface water network on site consists of series of roof gutters and downpipes, and Graf EcoBloc Attenuation Tank. These SuDS features are to work in tandem to provide a cumulative surface water storage capacity of circa 452m³, with a HydroBrake flow control device reducing the outflow from the proposed application site to the equivalent of 9.0l/s. This proposed design achieves compliance with all previously stated regulations whilst considering the constraints of the site.

FOUL EFFLUENT


The total wastewater loading from the site will be 17.415m³/day, with a peak flow of 1.26 l/s.

WATERMAINS

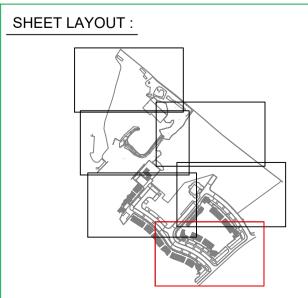
The total volume of water required by the proposed development will be circa $19.155 \text{m}^3/\text{day}$, with a peak flow of 1.23 l/s.

APPENDIX A – TOPGRAPHICAL SURVEY

www.apexsurveys.ie info@apexsurveys.ie 00353 1 691 0156

HEDGE TROUGH CATTLE GRID LINEWORK: EMBANKEMENT TOP DRAIN BREAKLINE BUILDING KERB BOTTOM WALL PATH/CHANGE SURFACE 101.50 O/HEAD ELECTRICITY O/HEAD TELECOM —— OE ——

GROUND LIGHT ILLUMINATED BOLLARD LAMP POST MARKER POST POST BOX
ROADSIGN
SIGN POST
TELEPHONE BOX
TELEPHONE POLE

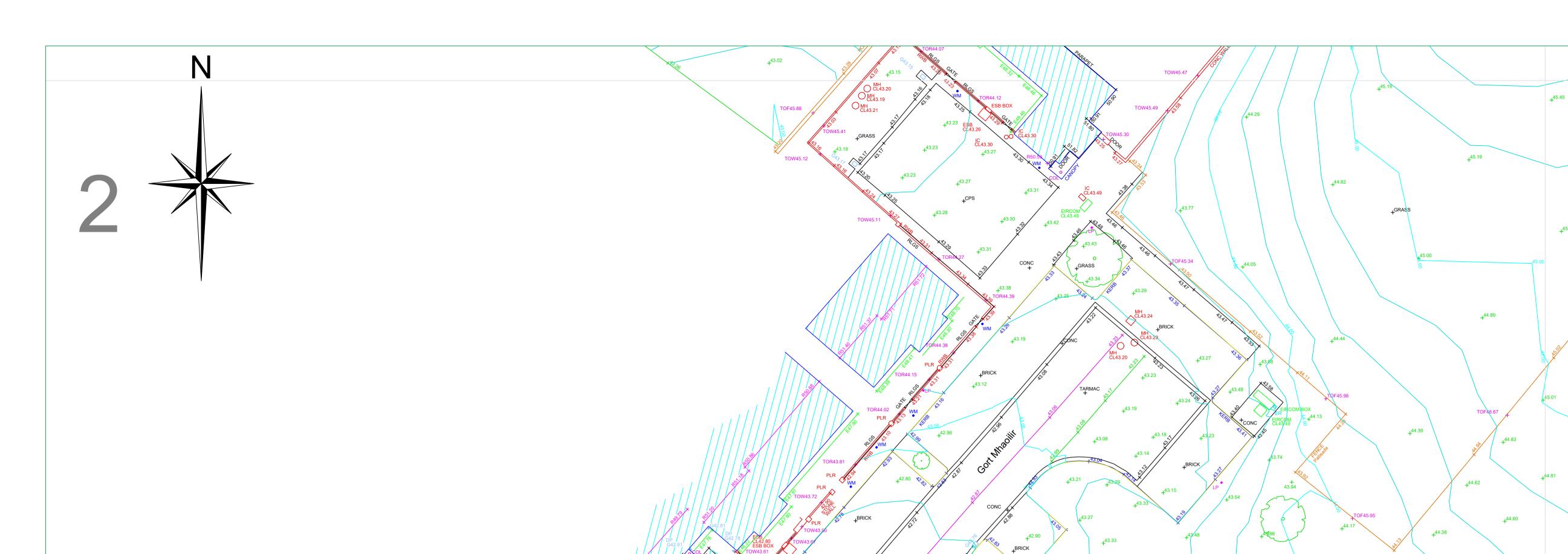

TRAFFIC LIGHT

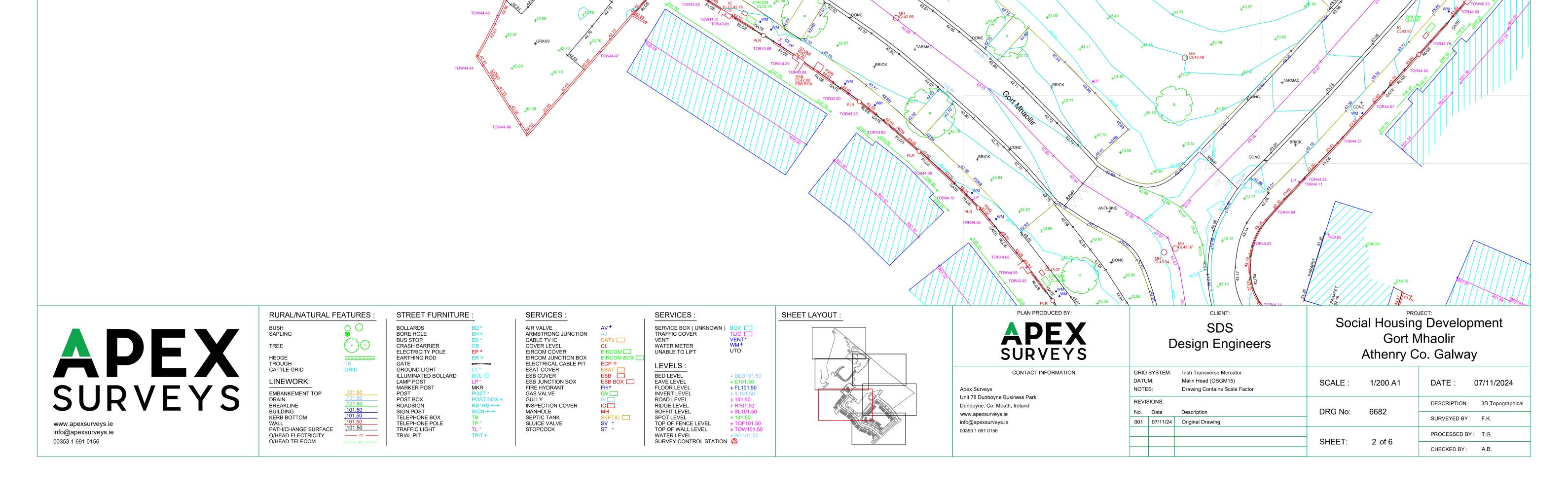
TRIAL PIT

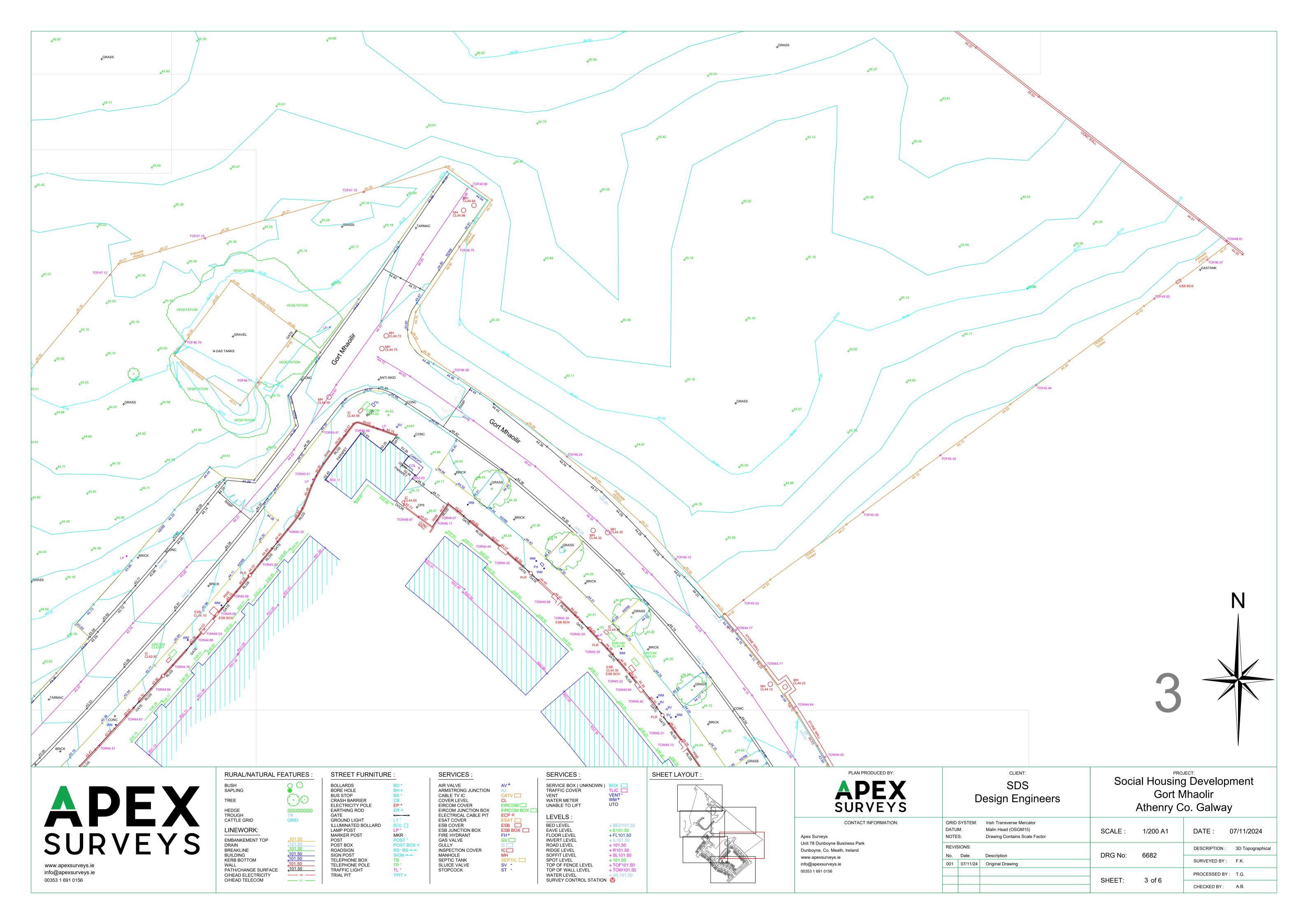
ESAT COVER
ESB COVER
ESB JUNCTION BOX
FIRE HYDRANT
GAS VALVE
GULLY POST *
POST BOX +
RS · RS • •
SIGN • • INSPECTION COVER
MANHOLE
SEPTIC TANK
SLUICE VALVE
STOPCOCK TL · TPIT +

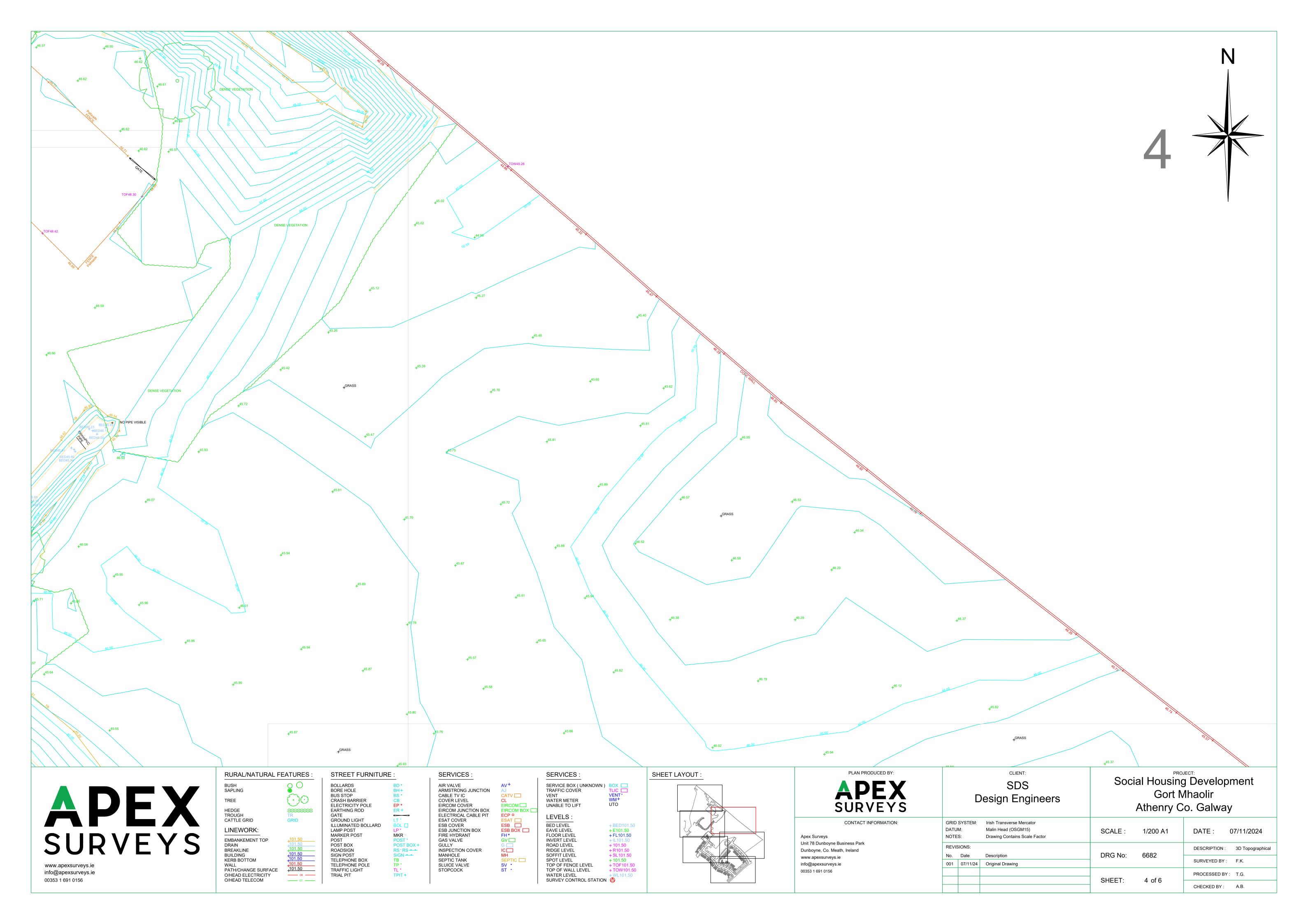
ESB C ESB BOX C

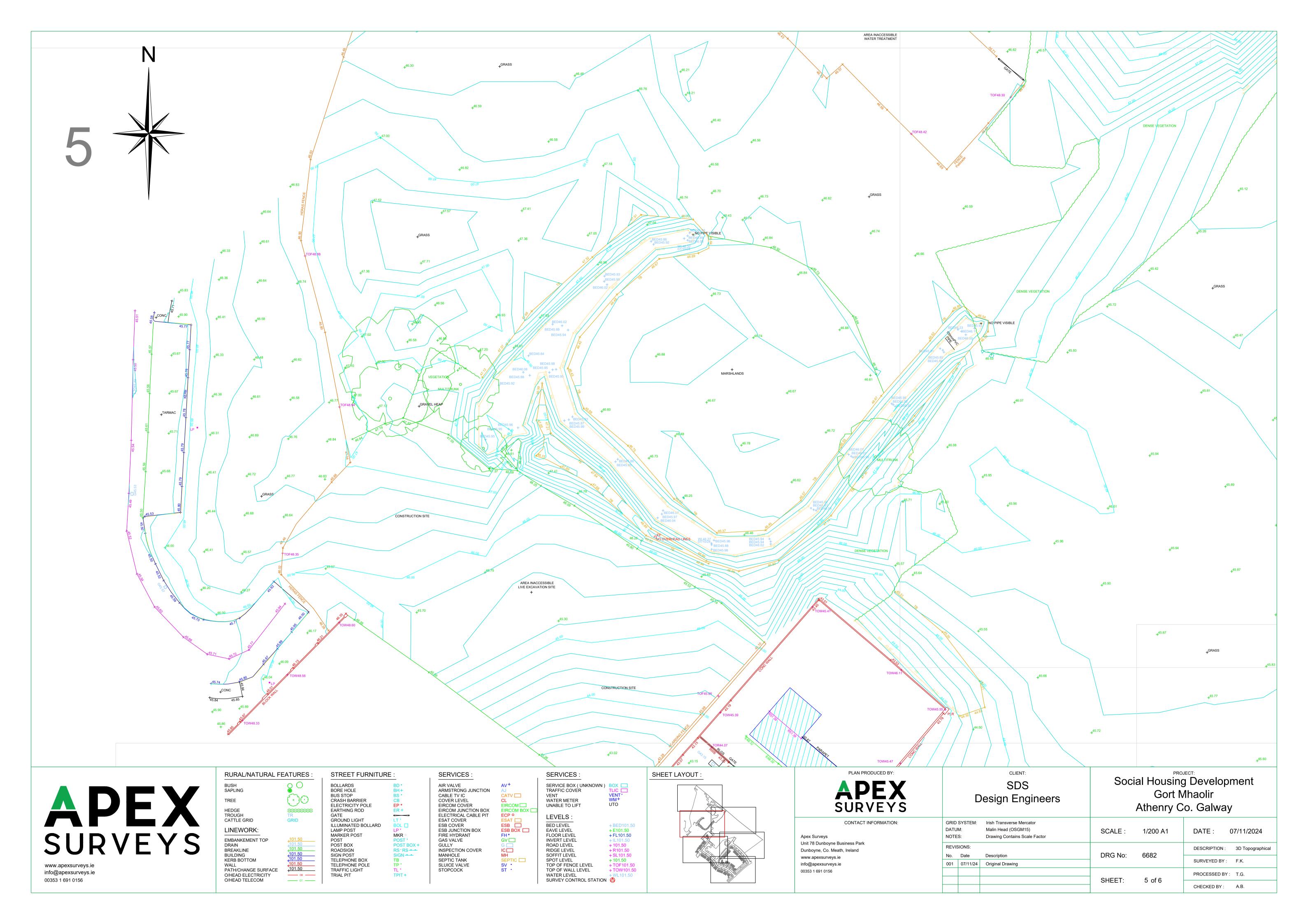
LEVELS: BED LEVEL EAVE LEVEL FLOOR LEVEL INVERT LEVEL ROAD LEVEL RIDGE LEVEL +BED101.50 +E101.50 +FL101.50 + IL101.50 + 101.50 +R101.50 SOFFIT LEVEL SPOT LEVEL TOP OF FENCE LEVEL + SL101.50 + 101.50 + TOF101.50 + TOW101.50 TOP OF WALL LEVEL WATER LEVEL SURVEY CONTROL STATION

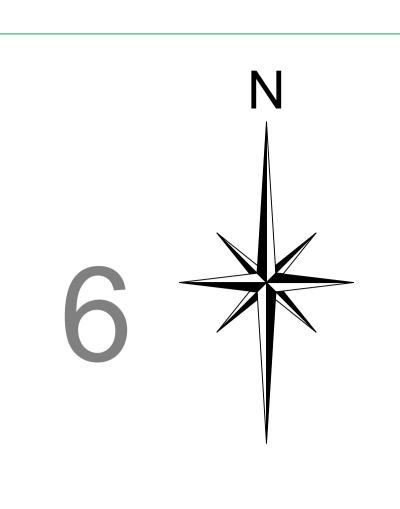



CONTACT INFORMATION:


Apex Surveys Unit 78 Dunboyne Business Park Dunboyne, Co. Meath, Ireland www.apexsurveys.ie info@apexsurveys.ie 00353 1 691 0156


SDS Design Engineers	Social Housing Gort N	Development Ihaolir o. Galway
Irish Transverse Mercator		


GRID SYSTEM: DATUM: Malin Head (OSGM15) SCALE: 1/200 A1 DATE: 07/11/2024 NOTES: Drawing Contains Scale Factor REVISIONS: DESCRIPTION: 3D Topographical DRG No: No. Date SURVEYED BY: F.K. 001 07/11/24 Original Drawing PROCESSED BY: T.G. SHEET: CHECKED BY: A.B.



00353 1 691 0156

RURAL/NATURAL FEATURES:

BUSH
SAPLING

TREE

HEDGE
TROUGH
CATTLE GRID

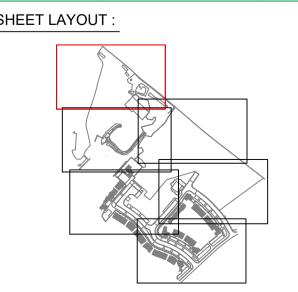
LINEWORK:

EMBANKEMENT TOP
DRAIN
BREAKLINE
BUILDING
KERB BOTTOM
WALL
PATH/CHANGE SURFACE
O/HEAD TELECOM

OT

BUSH
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50
101.50

TRIAL PIT


SERVICES:

AIR VALVE
ARMSTRONG JUNCTION
CABLE TV IC
COVER LEVEL
EIRCOM COVER
EIRCOM JUNCTION BOX
ELECTRICAL CABLE PIT
ESAT COVER
ESB COVER
ESB JUNCTION BOX
FIRE HYDRANT
GAS VALVE
GULLY
INSPECTION COVER
MANHOLE
SEPTIC TANK
SLUICE VALVE
STOPCOCK

SERVICES:

SERVICE BOX (UNKNOWN)
TRAFFIC COVER
VENT
VENT
WATER METER
UNABLE TO LIFT

LEVELS:
BED LEVEL
EAVE LEVEL
FL001.50
FLOOR LEVEL
INVERT LEVEL
ROAD LEVEL
ROAD LEVEL
RIDGE LEVEL
SOFFIT LEVEL
SOFFIT LEVEL
TOP OF FENCE LEVEL
TOP OF WALL LEVEL
WATER LEVEL
SURVEY CONTROL STATION

APEX SURVEYS

CONTACT INFORMATION:

CONTACT INFORMATION:

Apex Surveys
Unit 78 Dunboyne Business Park
Dunboyne, Co. Meath, Ireland
www.apexsurveys.ie

info@apexsurveys.ie

00353 1 691 0156

SDS
Design Engineers

Social Housing Development
Gort Mhaolir
Athenry Co. Galway

GRID SYSTEM: Irish Transverse Mercator DATUM: Malin Head (OSGM15) SCALE: 1/200 A1 DATE: 07/11/2024 NOTES: Drawing Contains Scale Factor REVISIONS: DESCRIPTION: 3D Topographical DRG No: SURVEYED BY: F.K. 001 07/11/24 Original Drawing PROCESSED BY: T.G. SHEET: 6 of 6 CHECKED BY: A.B.

APPENDIX B – SITE INVESTIGATION REPORT

S.I. Ltd Contract No: 6379

Client: Galway County Council
Engineer: SDS Design Engineers
Contractor: Site Investigations Ltd

Gort Mhaoilir, Athenry, Co. Galway Site Investigation Report

Prepared by:
Stephen Letch

Issue Date:	29/01/2025
Status	Final
Revision	0

<u>6379 – Gort Mhaoilir</u> <u>Athenry, Co. Galway</u>

Contents:		Page No.
1.	Introduction	1
2.	Site Location	1
3.	Fieldwork	1
4.	Laboratory Testing	3
5.	Ground Conditions	4
6.	Recommendations and Conclusions	4

Appendices:

- 1. Cable Percussive Borehole Logs
- 2. Trial Pit Logs and Photographs
- 3. Soakaway Test Results and Photographs
- 4. Plate Test Results
- 5. Slit Trench Log
- 6. Geotechnical Laboratory Test Results
- 7. Environmental Laboratory Test Results
- 8. Waste Classification Report
- 9. Survey Data

1. Introduction

On the instructions of SDS Design Engineers, Site Investigations Ltd (SIL) was appointed to complete a ground investigation at Gort Mhaoilir, Athenry, Co. Galway. The investigation was for a residential development and was completed on behalf of the Client, Galway County Council. The fieldworks were completed in November 2024.

This report presents the factual geotechnical data obtained from the field and laboratory testing with interpretation of the ground conditions discussed.

2. Site Location

Athenry is located to the east of Galway city in the west of Ireland with Gort Mhaoilir close to the town centre. The map on the left below shows the location of the Athenry to the east of Galway and the second map shows the location of the site in the town.

3. Fieldwork

All fieldwork was carried out in accordance with BS 5930:2015, Engineers Ireland GI Specification and Related Document 2nd Edition 2016 and Eurocode 7: Geotechnical Design. The fieldworks comprised of the following:

- 6 No. cable percussive boreholes
- 7 No. trial pits
- 5 No. soakaway tests
- 5 No. plate tests
- 1 No. slit trench

3.1. Cable Percussive Boreholes

Cable percussion boring was undertaken at 6 No. locations using a Dando 2000 rig and constructed 200mm diameter boreholes. The boreholes terminated at shallow depths ranging from 1.60mbgl (BH01) to 3.70mbgl (BH05) after an hour and a half chiselling was completed and no further progress was made. It was not possible to collect undisturbed samples due to the granular soils encountered so bulk disturbed samples were recovered at regular intervals.

To test the strength of the stratum, Standard Penetration Tests (SPT's) were performed at 1.00m intervals in accordance with BS 1377 (1990). In soils with high gravel and cobble content it is appropriate to use a solid cone (60°) (CPT) instead of the split spoon and this was used throughout the testing. The test is completed over 450mm and the cone is driven 150mm into the stratum to ensure that the test is conducted over an undisturbed zone. The cone is then driven the remaining 300mm and the blows recorded to report the N-Value. The report shows the N-Value with the 75mm incremental blows listed in brackets (e.g., BH02 at 1.00mbgl where N=12-(2,2/2,4,3,3)). Where refusal of 50 blows across the test zone was achieved during testing, the penetration depth is also reported (e.g., BH01 at 1.00mbgl where N=50-(2,8/50 for 140mm)).

At BH03, a groundwater monitoring standpipe was installed which consisted of a slotted pipe with a gravel response zone around the slotted section and bentonite seals at the surface.

The cable percussive borehole logs are presented in Appendix 1.

3.2. Trial Pits

7 No. trial pits were excavated using a tracked excavator and they were logged and photographed by SIL geotechnical engineer. Representative disturbed bulk samples were recovered as the pits were excavated, which were returned to the laboratory for geotechnical testing.

The trial pit logs and photographs are presented in Appendix 2.

3.3. Soakaway Tests

At 5 No. locations, soakaway tests were completed and logged by SIL geotechnical engineer. BRE Special Digest 365 stipulates that the pit should be filled three times and that the final

cycle is used to provide the infiltration rate. The time taken for the water level to fall from 75% volume to 25% volume is required to calculate the rate of infiltration. However, if the water level does not fall at a steady rate, then the test is deemed to have failed and the area is unsuitable for storm water drainage.

The soakaway test results and photographs are presented in Appendix 3.

3.4. Plate Tests

At 5 No. locations, plate tests were completed to provide a California Bearing Ratio value for pavement design. The tests were completed at 0.50mbgl, using the excavator as kentledge. Pressure is then added to a 600mm diameter plate, via a hydraulic jack, with the settlement of the plate measured using gauges. The rate of settlement is used to calculate the CBR value. After the test was completed, hand held shear vane tests were completed on the soil directly beneath the plate, with the results shown on the logs.

The plate test results are presented in Appendix 4.

3.5. Slit Trench

Due to the possibility of an old septic tank leaking on an adjacent site, a slit trench was completed to the north west of the site to see if any contamination was evident. The trench did identify a small area of some discolouration of the soil and this was measured and logged before the trench was backfilled.

The slit trench log is presented in Appendix 5.

3.6. Surveying

Following completion of all the fieldworks, a survey of the exploratory hole locations was completed using a GeoMax GPS Rover. The data is supplied on each individual log and along with a site plan in Appendix 9.

4. Laboratory Testing

Geotechnical laboratory testing was completed on representative soil samples in accordance with BS 1377 (1990). Testing included:

- 5 No. Moisture contents
- 5 No. Atterberg limits
- 5 No. Particle size gradings
- 5 No. pH, sulphate and chloride content

Environmental testing was completed by ALS Environmental Ltd. and consists of the following:

• 5 No. Suite I analysis

The geotechnical laboratory test results are presented in Appendix 6 with the environmental tests reported in Appendix 7 and a Waste Classification Report in Appendix 8.

5. Ground Conditions

5.1. Overburden

MADE GROUND was identified at 2 No. locations, TP01 and TP03, to the south east of the site, to 1.20mbgl and 0.90mbgl respectively. This was logged as a cohesive clay dominant soil in TP01 and granular gravel dominant soil in TP03. Anthropogenic material of plastic, timber and concrete fragments were identified in the soil.

The natural ground conditions are generally cohesive brown slightly sandy gravelly silty CLAY with cobbles overlying grey slightly sandy gravelly silty CLAY with cobbles and boulders.

The SPT tests recorded values of 12 to 18 at 1.00mbgl, indicating firm to stiff soils, increasing to 17 to 24 at 2.00mbgl and 28 at 3.00mbgl in BH05, indicating stiff soils. Numerous refusals were completed across the site and this is due to the high cobble and boulder content within the soils.

The laboratory tests of the cohesive soils show CLAY soils with low plasticity indexes of 9 to 14% recorded. The particle size distribution curves were poorly sorted straight-line curves with low fines content of 23% to 40% in the cohesive soils.

5.2. Groundwater

No groundwater was recorded in the boreholes or trial pits during the fieldworks.

6. Recommendations and Conclusions

Please note the following caveats:

The recommendations given, and opinions expressed in this report are based on the findings as detailed in the exploratory hole records. Where an opinion is expressed on the material between the exploratory hole locations or below the final level of excavation, this is for guidance only and no liability can be accepted for its accuracy. No responsibility can be accepted for adjacent unexpected conditions that have not been revealed by the exploratory holes. It is further recommended that all bearing surfaces when excavated should be inspected by a suitably qualified Engineer to verify the information given in this report.

Excavated surfaces in clay strata should be kept dry to avoid softening prior to foundation placement. Foundations should always be taken to a minimum depth of 0.50mBGL to avoid the effects of frost action and possible seasonal shrinkage/swelling.

If it is intended that on-site materials are to be used as fill, then the necessary laboratory testing should be specified by the Client to confirm the suitability. Also, relevant lab testing should be specified where stability of side slopes to excavations is a concern, or where contamination may be an issue.

6.1. Shallow Foundations

Due to the unknown depth of foundation and no longer-term groundwater information, this analysis assumes the groundwater will not influence the construction or performance of these foundations.

MADE GROUND was encountered at TP01 and TP03 to 1.20mbgl. SIL do not recommend that narrow shallow foundations are placed on fill material due to the unknown compaction methods used during laying of man-made material. This unknown could result in softer spots and differential settlement once construction is completed. If shallow foundations are to be used and man-made soils are encountered below foundation level, then the soil should be removed and replaced with engineered fill which is compacted to the required standard.

For cohesive soils, a correlation proposed by Stroud and Butler between SPT N-values and plasticity indices can be used to calculate the undrained shear strength. Dependent on the plasticity index at each site, the Stroud and Butler correlation is C_u =4 to 6N. With the low plasticity indexes recorded in the laboratory for the soils on this site, the correlation chosen is C_u =6N. Using the lowest value of 12, this indicates a C_u value of 72kN/m². This can then be used to calculate the ultimate bearing capacity, which is the total loading that the soil could withstand and this has been calculated as 385kN/m². Finally, a factor of safety is applied to ensure that failure of the soils does not occur and a factor of safety of 3 has been chosen for this site. This provides an allowable bearing capacity of 130kN/m².

It would be recommended that all founding strata be inspected by a suitably qualified Engineer prior to pouring the foundations and additional insitu testing completed if required to confirm the soils are suitable for the final foundation design.

The following assumptions were made as part of these analyses. If any of these assumptions are not in accordance with detailed design or observations made during construction these recommendations should be re-evaluated.

• Foundations are to be constructed on a level formation of uniform material type.

- All man-made or filled material is to be removed prior to construction.
- The bulk unit weight of the material in this stratum has a minimum density of 19kN/m³.
- Based on groundwater observations this analysis assumes the groundwater will not influence the construction or performance of these foundations.
- All bearing capacity calculations allow for 25mm settlement.

The trial pit walls generally remained stable during excavation but TP05 and TP06 did record some instability and due to the high sand and gravel content in the soils, it would be recommended that all excavations should be checked immediately and battered back accordingly. Regular inspection of temporary excavations should be completed during construction to ensure that all slopes are stable. Temporary support should be used on any excavation that will be left open for an extended period.

6.2. Groundwater

The caveats below relating to interpretation of groundwater levels should be noted:

There is always considerable uncertainty as to the likely rates of water ingress into excavations in clayey soil sites due to the possibility of localised unforeseen sand and gravel lenses acting as permeable conduits for unknown volumes of water.

Furthermore, water levels noted on the borehole and trial pit logs do not generally give an accurate indication of the actual groundwater conditions as the borehole or trial pit is rarely left open for sufficient time for the water level to reach equilibrium.

Also, during boring procedures, a permeable stratum may have been sealed off by the borehole casing, or water may have been added to aid drilling. Therefore, an extended period of groundwater monitoring using any constructed standpipes is required to provide more accurate information regarding groundwater conditions. Finally, groundwater levels vary with time of year, rainfall or any nearby construction sites.

Pumping tests would be required to determine likely seepage rates and persistence into excavations taken below the groundwater level. Deep trial pits also aid estimation of seepage rates.

As discussed previously, no groundwater was recorded in the boreholes and trial pits during the fieldworks.

There is always considerable uncertainty as to the likely rates of water ingress into excavations in cohesive soil sites due to the possibility of localised unforeseen sand and gravel lenses acting as permeable conduits for unknown volumes of water. Based on this information at the

exploratory hole locations to date, it is considered likely that any shallow ingress (less than 2.00mbgl) into excavations of the CLAY will be slow to medium.

If groundwater is encountered during excavations then mechanical pumps will be required to remove the groundwater from sumps. Sumps should be carefully located and constructed to ensure that groundwater is efficiently removed from excavations and trenches.

6.3. Soakaway Tests

Two soakaway tests, INF1 and INF3, failed the specification as the water level did not fall sufficiently enough to complete the test. The BRE Digest stipulates that the pit should half empty within 24hrs, and extrapolation indicates this condition would not be satisfied. The tests were terminated at the end of the first (of a possible three) fill/empty cycle since further testing would give even slower fall rates due to increased soil saturation. The unsuitability of the soils for soakaways is further suggested by the soil descriptions of the materials in this area of the site where the soakaway was completed, i.e., well compacted cohesive soils.

The remaining three tests did pass the specification with similar f-values of 2.65×10^{-5} m/s to 4.22×10^{-5} m/s. Any soakaway should be designed using these f-values.

6.4. Pavement Design

The plate test results in Appendix 4 recorded values of 15.6% to 19.6%.

The plate tests were completed at 0.50mbgl and inspection of the formation strata should be completed prior to construction of the pavement. Once the exact formation levels are finalised then additional in-situ testing could be completed to assist with the detailed pavement design.

6.5. Contamination

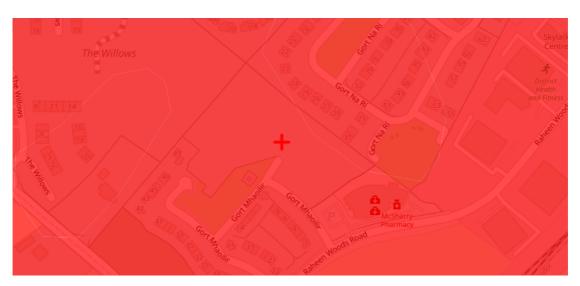
Environmental testing was carried out on five samples from the investigation and the results are shown in Appendix 7. For material to be removed from site, Suite I testing was carried out to determine if the material is hazardous or non-hazardous and then the leachate results were compared with the published waste acceptance limits of BS EN 12457-2 to determine whether the material on the site could be accepted as 'inert material' by an Irish landfill.

The Waste Classification report created using HazWasteOnline™ software shows that the material tested can be classified as non-hazardous material.

Following this analysis of the solid test results, the leachate disposal suite results indicate that the soils tested would generally be able to be treated as Inert Waste. The sample from ST01 did record an elevated sulphate level but this was from the soils showing discolouration from

the possible leaking septic tank on the adjacent site so this may be localised rather than widespread.

Five samples were tested for analysis but it cannot be discounted that any localised contamination may have been missed. Any MADE GROUND excavated on site should be stockpiled separately to natural soils to avoid any potential cross contamination of the soils. Additional testing of these soils may be requested by the individual landfill before acceptance and a testing regime designed by an environmental engineer would be recommended to satisfy the landfill.


6.6. Aggressive Ground Conditions

The chemical test results in Appendix 6 indicate a general pH value between 8.72 and 8.85, which is close to neutral and below the level of 9.

The maximum value obtained for water soluble sulphate was 126 mg/l as SO_3 . The BRE Special Digest 1:2005 - `Concrete in Aggressive Ground' guidelines require SO_4 values and after conversion ($SO_4 = SO_3 \times 1.2$), the maximum value of 151 mg/l shows Class 1 conditions and no special precautions are required.

6.7. Radon Gas

The Environmental Protection Agency (EPA) has recently updated the Radon gas exposure map and this is available to view on the EPA website. This shows the possible exposure to radon gas with the bedrock geology, subsoil geology, soil permeability and aquifer type analysed to produce the map. The map below shows that the site falls within the high level of 1 in 5 homes are at risk of radon exposure. Measures should be taken in the form of radon protection barriers from radon exposure in the new structures.

EPA map identifying possible Radon exposure.

https://gis.epa.ie/EPAMaps/Radon?&lid=EPA:RadonRiskMapofIreland

Appendix 1 Cable Percussive Borehole Logs

Contra		Cable Percussion	n Bo	orel	nole	Lo	g		В	orehole BH0	
Contrac	ct:	Gort Mhaoilir	Easting	j:	549565	5.680		Date Started:	06/11	/2024	
Locatio	n:	Athenry, Co. Galway	Northin	g:	728009	9.940		Date Completed:	06/11	/2024	
Client:		Galway County Council	Elevati	on:	45.53			Drilled By:	D. Mo	Eoin	
Engine	er:	SDS Design Engineers	Boreho		200mm	1		Status:	FINA	L	
Dept		Stratum Description	Legend	Level	(mOD)			and Insitu Tes		Water Strike	Backfill
Scale	Depth	TOPSOIL.		Scale -	Depth	Depth	Туре	Result		Strike	
0.5 —	0.20	Brown sandy slightly gravelly silty CLAY with high cobble content.		45.0 —	45.33						
- 1.0 — - -	4.40			- - 44.5 - - -		1.00 1.00	B C	DMc01 50 (2,8/50 140mm) for		
1.5 —	1.40	Obstruction - possible boulders.	000	44.0 —	44.13						
- - -	1.60	End of Borehole at 1.60m		-	43.93	1.60	С	50 (25 fo 5mm/50 for	or 5mm)		
2.0 —				43.5 -	-						
2.5 —				43.0 —	-						
3.0 —				42.5 - -	-						
3.5 —				42.0 —	-						
4.0 —				- 41.5 –	-						
- - 4.5 — -				41.0 —	-						
- - -				-	-						
		Chiselling: Water Strikes: Water Details: From: To: Time: Strike: Rose: Depth Sealed Date: Hole Depth: Water Details: 1.40 1.60 01:30 06/11 1.60 Dry	Install From: To		e: From:	Backfill: To: Typ .60 Arisi		Remarks: orehole terminated obstruction.	d due	Legend: B: Bulk D: Disturb U: Undistr ES: Envir W: Water C: Cone S S: Split sp	urbed onmental SPT

Contra		Cable Percussion	n Bo	orel	nole	Lo	g		В	orehole BH0	
Contrac	ct:	Gort Mhaoilir	Easting	g:	549525	5.171		Date Started:	06/11	/2024	
Locatio	n:	Athenry, Co. Galway	Northin	ıg:	728054	1.603		Date Completed:	06/11	/2024	
Client:		Galway County Council	Elevati	on:	45.64			Drilled By:	D. Mo	cEoin	
Engine	er:	SDS Design Engineers	Boreho		200mm	า		Status:	FINA	L	
Depth		Stratum Description	Legend	Level	(mOD)			and Insitu Tes		Water	Backfill
Scale	Depth	TOPSOIL.		Scale	Depth	Depth	Туре	Result		Strike	
0.5 —	0.20	Firm brown sandy slightly gravelly silty CLAY with high cobble content.		45.5 - - - - - 45.0 -	45.44						
1.0 — - - - 1.5 —	1.20	Firm brown grey sandy slightly gravelly silty CLAY with high cobble content.		44.5 - - - - -	44.44	1.00	B C	DMc02 N=12 (2,2/2			
- - -	1.70	Obstruction - possible boulders.	0 0	44.0 —	43.94						
2.0 —	1.90	End of Borehole at 1.90m	0,0	-	43.74	1.90	С	50 (25 f 5mm/50 for			
2.5 —				43.5							
		Chiselling: Water Strikes: Water Details:		lation:		Backfill:		Remarks:		Legend: B: Bulk	
		From: To: Time: Strike: Rose: Depth Sealed Date: Hole Depth: Water Depth: 1.70 1.90 01:30	From: T	o: Pipe				orehole terminate o obstruction.	ed due	D: Bulk D: Disturb U: Undisti ES: Envir W: Water C: Cone S S: Split sp	urbed onmental SPT

Contra		Cable Percussion	n Bo	orel	nole	Lo	g		В	orehole BH0	
Contrac	ot:	Gort Mhaoilir	Easting	j:	549617	7.943		Date Started:	07/11	/2024	
Locatio	n:	Athenry, Co. Galway	Northin	g:	728020	0.002		Date Completed:	07/11	/2024	
Client:		Galway County Council	Elevation	on:	45.53			Drilled By:	D. Mo	Eoin	
Engine	er:	SDS Design Engineers	Boreho		200mm	า		Status:	FINA	L	
Depth	n (m)	Stratum Description	Legend	Level	(mOD)		mples	and Insitu Tes	sts	Water	Backfil
Scale	Depth	TOPSOIL.		Scale	Depth	Depth	Туре	Result		Strike	
0.5 —		Firm brown sandy slightly gravelly silty CLAY with high cobble content.		- - - 45.0 — -	45.33						
1.0 —	1.10	Stiff brown grey sandy slightly gravelly silty CLAY with high cobble content.		-44.5 - 	44.43	1.00	B C	DMc03 N=50 (2,3/5 245mm	50 for		
2.0 —						2.00 2.00	B C	DMc04 N=17 (3,3/4,			
3.0 —	3.10 3.30	Obstruction - possible boulders. End of Borehole at 3.30m		42.5 - - - - - - - 42.0 -	42.43	3.00 3.00 3.30	B C C	DMc05 50 (25 fo 105mm/50 40mm) 50 (25 fo 5mm/50 for	or) for) or		
4.0 —				- - 41.5 - - -							
4.5 —				41.0 —							
		1.40 1.50 01:00 07/11 3.30 Dry	Install From: To 0.00 1.3 1.30 3.3	o: Pipe	e: From: 1			Remarks: orehole terminate o obstruction.		Legend: B: Bulk D: Disturb U: Undistr ES: Enviro W: Water C: Cone S S: Split sp	urbed onmenta SPT

Contra		Cable Percussion	n Bo	orel	nole	Lo	g		В	orehole BH0	
Contrac	ot:	Gort Mhaoilir	Easting	j:	549568	3.282		Date Started:	08/11	/2024	
Locatio	n:	Athenry, Co. Galway	Northin	g:	728052	2.783		Date Completed:	08/11	/2024	
Client:		Galway County Council	Elevation	on:	46.35			Drilled By:	D. Mo	Eoin	
Engine	er:	SDS Design Engineers	Boreho Diamet		200mm	า		Status:	FINA	L	
Depth		Stratum Description	Legend	Level	(mOD)			and Insitu Tes		Water Strike	Backfil
Scale	Depth	TOPSOIL.		Scale	Depth	Depth	Туре	Result		Strike	
0.5 —		Firm brown sandy slightly gravelly silty CLAY with high cobble content.		46.0 —	46.15						
1.0 —	1.10	Stiff brown grey sandy slightly gravelly silty CLAY with high cobble content.		45.5 — 45.0 —	45.25	1.00	B C	DMc06 N=18 (2,3/4,			
1.5 —				- - - 44.5 - - -		2.00 2.00	B C	DMc07 N=50 (2,4/5 255mm	50 for		
2.5 —	2.40 2.60	Obstruction - possible boulders. End of Borehole at 2.60m		-44.0 — - - -	43.95	2.60	С	50 (25 fo 5mm/50 for	or		
3.0 —				43.5 - - - - - 43.0 -	-						
3.5 —				- - - 42.5 –	-						
4.0 —				- - - 42.0 —	-						
4.5 —					-						
				_							
		Chiselling: Water Strikes: Water Details: From: To: Time: Strike: Rose: Depth Sealed Date: Hole Depth: Water Details: 1.80 1.90 01:00 08/11 2.60 Dry 2.40 2.60 01:30 08/11 2.60 Dry	Install From: To		e: From:	Backfill: To: Ty 2.60 Aris		Remarks: forehole terminate o obstruction.		Legend: B: Bulk D: Disturb U: Undistr ES: Envir W: Water C: Cone S S: Split sp	urbed onmental

Contract No:	Cable Percussio	n Bo	orel	nole	Lo	g		В	orehole BH0	
Contract:	Gort Mhaoilir	Easting	J:	549516	6.648		Date Started:	07/11	/2024	
Location:	Athenry, Co. Galway	Northin	g:	728104	1.100		Date Completed:	07/11	/2024	
Client:	Galway County Council	Elevation	on:	45.02			Drilled By:	D. Mo	Eoin	
Engineer:	SDS Design Engineers	Boreho		200mm	1		Status:	FINA	L	
Depth (m)	Stratum Description	Legend	Level	(mOD)			and Insitu Tes		Water Strike	Backfill
Scale Depth	TOPSOIL.		Scale	Depth	Depth	Туре	Result		Strike	
1.0 — 1.5 — 1.60 — 2.0 —	Firm brown sandy slightly gravelly silty CLAY with high cobble content. Stiff brown grey sandy slightly gravelly silty CLAY with high cobble content.		44.5	44.82	1.00 1.00	ВС	DMc08 N=15 (2,2/3, DMc09 N=24 (2,4/4,	3,4,5)		
3.5 — 3.50	Obstruction - possible boulders. End of Borehole at 3.70m		42.5 —	41.52	3.00 3.00 3.70	ВС	DMc10 N=28 (3,5/5, 50 (25 fc 5mm/50 for	8,7,8) or		
4.5 -	Chiselling: Water Strikes: Water Details: From: To: Time: Strike: Rose: Depth: Depth: <t< td=""><td>Install From: To</td><td>40.5 - - - - - - - - -</td><td>e: From:</td><td>Backfill: To: Tyy</td><td></td><td>Remarks: orehole terminate o obstruction.</td><td>d due</td><td>Legend: B: Bulk D: Disturb U: Undistur ES: Envir</td><td>urbed onmental</td></t<>	Install From: To	40.5 - - - - - - - - -	e: From:	Backfill: To: Tyy		Remarks: orehole terminate o obstruction.	d due	Legend: B: Bulk D: Disturb U: Undistur ES: Envir	urbed onmental

Contract		Cable Percussion	n Bo	orel	nole	Lo	g		В	orehole BH0	
Contract	t:	Gort Mhaoilir	Easting	j:	549481	1.870		Date Started:	08/11	/2024	
Location	1:	Athenry, Co. Galway	Northin	g:	728052	2.619		Date Completed:	08/11	/2024	
Client:		Galway County Council	Elevation	on:	46.08			Drilled By:			
Enginee	r:	SDS Design Engineers	Boreho Diamet		200mm	1		Status:	FINA	L	
Depth		Stratum Description	Legend		(mOD)			and Insitu Tes		Water Strike	Backfill
Scale _	Depth	TOPSOIL.		Scale 46.0 —	Depth	Depth	Type	Result		Cumo	
0.5 —	0.30	Firm brown sandy slightly gravelly silty CLAY with high cobble content.		- - - 45.5 —	45.78						
1.0 —				- - 45.0 — -		1.00	B C	DMc11 N=14 (2,2/3,			
1.5 —	1.50	Stiff brown grey sandy slightly gravelly silty CLAY with high cobble content.		44.5 — - -	44.58						
2.0 —					-	2.00 2.00	B C	DMc12 N=22 (2,4/5,			
2.5 —				43.5 -	-			5			
	3.30	Obstruction - possible boulders.		43.0 —	42.78	3.00	B C	DMc13 50 (4,5/50 125mm	for)		
3.5 —	3.40	End of Borehole at 3.40m		42.5 — -	42.68	3.40	С	50 (25 fo 5mm/50 for			
4.0 —				42.0 —	-						
4.5 —				- 41.5 — - -							
		Chiselling: Water Strikes: Water Details: From: To: Time: Strike: Rose: Depth: Sealed Seal	Install From: To		e: From:	Backfill: To: Typ 3.40 Arisi	I	Remarks: orehole terminated o obstruction.	d due	Legend: B: Bulk D: Disturb U: Undistr ES: Envir W: Water C: Cone S S: Split sp	urbed onmental SPT

Appendix 2 Trial Pit Logs and Photographs

	act No:	Tria					Trial Pit TP0			
Contr	act:	Gort Mhaoilir	Easting:	54958	5.917		Date:		01/11/2024	
Locat	tion:	Athenry, Co. Galway	Northing:	727998	3.146		Excavator	-: ,	JCB 3CX	
Client	t:	Galway County Council	Elevation:	45.23			Logged B	y: I	M. Kaliski	
Engin	neer:	SDS Design Engineers	Dimensions (LxWxD) (m)	3.50 x	0.50 x	2.10	Status:		FINAL	
Level	l (mbgl)	Stratum Description	((2,777,5) (111)	Legend	Level	(mOD) Sampl	les / F	Field Tests	Water
Scale:	Depth	TOPSOIL.		9	Scale:	Depth	: Depth	Тур	e Result	Strike
0.5 —	0.10	MADE GROUND: grey brown slightly sandy gravel nigh cobble, low boulder content, frequent gravel plastic, timber and concrete fragments.	relly silty clay with I laminas and some			45.13	0.50	ES	6 MK12	
1.0 —	1.20	Firm grey slightly sandy gravelly silty CLAY with	high cobble and		- - 44.0 —	44.03	1.00	В	MK13	
1.5 —		medium boulder content and frequent gravel lam coarse. Gravel is fine to coarse, angular to subro Cobbles and boulders are angular to subrounder 300mm diameter).	ounded of limestone.		- - - 43.5 —		1.50	В	MK14	
2.0 —	2.10	Obstruction - possible boulders. Pit terminated at 2.10m			43.0 —	43.13	3			
2.5 —					- 42.5 — -					
		Termination: Pit Wall Stability: Groun	ndwater Rate: Rema	rks:			Key:	<u> </u>		
			Dry -				B = D = CBR =	Smal Undi=	disturbed Il disturbed isturbed CBR onmental	l

	act No: 379	Trial Pit Log											Trial Pit	
Contra	act:	Gort Mhaoilir			Easting:		549540	.830		Date:		01	/11/2024	
Locati	ion:	Athenry, Co. Galwa	у		Northing:		728046	5.118		Excava	ator:	JC	B 3CX	
Client	:	Galway County Cou	uncil		Elevation	1:	45.88			Logged	d By:	M.	Kaliski	
Engin	eer:	SDS Design Engine	eers		Dimensio (LxWxD)		3.70 x	0.50 x	3.00	Status:	:	FII	NAL	
L	(mbgl)		Stratum Descript	ion		ı	Legend	Level					eld Tests	Water Strike
Scale:	Depth	TOPSOIL.				8		Scale:	Depth	ı: Dep	th Ty	/pe	Result	Strike
0.5 —	0.30	Firm grey slightly san and occasional grave to coarse, angular to to subrounded of lime	el laminas. Sand is fir subrounded of limes	ne 🏻		- - 45.5 - - - -	45.58	0.5	0 E	es.	MK09			
1.0 —				의 : [의 : [의 : [의 : [의 : [의 : [의		45.0 —		1.0	0	В	MK10			
1.5 —						그런 그런 그런 그런 그런 그런 그런 그런 그런		- - - - 44.0 —						
2.5 —		Firm becoming stiff g cobble and low bould fine to coarse, angula boulders are angular diameter).	ler content. Sand is f ar to subrounded of li to subrounded of lim	gh		43.5 -	43.78	2.50	0	В	MK11			
	3.00	-	Pit terminated at 3.00		5 . I.	ľ	- * *****		42.88	ш,				
		Termination: Scheduled depth.	Pit Wall Stability: Pit walls stable.	Groundwater Dry	Rate: R	emar	ks:				= Bul = Sm	nall d ndist	sturbed listurbed urbed CBR nental	

Contract No: 6379		٦	Trial Pit I	_og						Trial Pit	
Contract:	Gort Mhaoilir		Eas	sting:	549620).731		Date:	(01/11/2024	
Location:	Athenry, Co. Galway		Noi	thing:	728008	3.343		Excavato	r: ,	JCB 3CX	
Client:	Galway County Council		Ele	vation:	45.26			Logged B	y:	M. Kaliski	
Engineer:	SDS Design Engineers			nensions	3.40 x	0.50 x	1.40	Status:		FINAL	
Level (mbgl)	Character	una Danaminati		WxD) (m):		Level	(mOD) Samp	les / F	Field Tests	Water
Scale: Depth	TOPSOIL.	um Descripti	OH		Legend	Scale:	Depth	: Depth	Тур	e Result	Strike
0.10	MADE GROUND: grey brown cobble and boulder content ar	very silty grand some timb	avelly sand with h ber fragments.	igh		- 45.0 — -	45.16	3			
1.0 —	Firm grey slightly sandy grave medium boulder content. San coarse, angular to subrounde are angular to subrounded of	d is fine to co d of limestor	oarse. Gravel is fi ne. Cobbles and b	ne to oulders	0 2 4 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	- 44.5 — - -	44.36	1.00	В	MK15	
1.40	Obstruction - possible boulder Pit ter	'S. minated at 1.40)m			- 44.0 — - -	43.86	3			
2.0 —						43.5 — -					
-						43.0 —					
2.5 -						42.5 —					
	Termination: Pit Wall	Stability:	Groundwater Ra	te: Rema	rks:			Key:			
	Obstruction - Pit walls possible boulders.	s stable.	Dry	-					Smal Undi=	disturbed Il disturbed isturbed CBR onmental	<u> </u>

	act No:		•	Trial Pit L	.og							Trial Pit	
Contr	act:	Gort Mhaoilir		East	ing:	549577	7.720		Date:		01	/11/2024	
Locat	tion:	Athenry, Co. Galway	у	Nort	hing:	728046	8.005		Excava	tor:	JC	B 3CX	
Clien	t:	Galway County Cou	ıncil	Elev	ation:	46.13			Logged	Ву:	M.	Kaliski	
Engir	neer:	SDS Design Engine	eers		ensions /xD) (m):	4.20 x	0.50 x	1.30	Status:		FII	NAL	
Level	l (mbgl)		Stratum Descript	1.		Legend	Level	(mOD) San	nples	s / Fie	ld Tests	Water
Scale:	Depth	TOPSOIL.	- Chatam Beechpt			Z	Scale:	Depth	n: Dept	h 1	Гуре	Result	Strike
1.5 — 2.0 — 2.5 — - - - - - - - - - - - - -	1 20	Firm grey slightly san boulder content and coarse. Gravel is fine Cobbles and boulders 300mm diameter).	occasional gravel lan to coarse, angular to s are angular to subr	ninas. Sand is fine to subrounded of limeston to unded of limeston	o nestone.		46.0 — 45.5 — 45.0 — 44.5 — 44.5 — 43.5 —	44.83	1.00		В	MK16	
		Termination:	Pit Wall Stability:	Groundwater Rate	e: Rema	rks			Ke	/:			
(Obstruction -	Pit walls stable.	Dry	-	. NJ.			B =	В		sturbed	
6		possible boulders.								R = L	Jndist	listurbed urbed CBR nental	

	act No: 379								Trial Pi			
Contr	act:	Gort Mhaoilir			Easting:	5495	36.109		Date:		01/11/2024	
Locat	ion:	Athenry, Co. Galwa	ау		Northing:	7280	85.166		Excavato	or:	JCB 3CX	
Client	:	Galway County Co	uncil		Elevation:	45.6	7		Logged E	Ву:	M. Kaliski	
Engin	eer:	SDS Design Engine	eers		Dimensior (LxWxD) (x 0.50	x 2.70	Status:		FINAL	
Level	(mbgl)		Stratum Descript		(LXVVXD) (Leger	Leve	l (mOD) Samı	ples /	Field Tests	Water
Scale:	Depth	TOPSOIL.	Otratum Descript			Leger	Scale	: Depth	n: Depth	Тур	pe Result	Strike
1.5 — 2.0 — 2.5 —	1.40	Firm grey slightly sallow boulder content. angular to subround angular to subround angular to subround is fine to coarse, angular diameter).	andy slightly gravelly e to coarse, angular to Sand is fine to coarsed of limestone. Cobled of limestone (up to boulder content. Sangular to subrounded of r to subrounded of limestone of limestone of limestone.	AY with medium se. Gravel is findles and boulded a 300mm diamed avelly silty CLA id is fine to coast limestone. Co	of limeston a cobble are to coarse ers are eter). Y with rese. Grave obbles and		45.5 45.5 45.5 45.6 45.6 45.6 45.6 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0	45.57	7 1.00	В		
_		Pit terminated due to	Pit terminated at 2.7		Data: D-	marke		-	Wa			
		Termination:	Pit Wall Stability:	Groundwater	rate: Re	marks:			Key:		disturbed	
		Pit wall instability.	Instability below 1.00mbgl.	Dry	-				D = CBR	Sma Und =	disturbed all disturbed disturbed CBI onmental	R

	act No: 379			Log						Trial Pit		
Contr	act:	Gort Mhaoilir			Easting:	54950	5.510		Date:		01/11/2024	
Locat	ion:	Athenry, Co. Galwa	ау		Northing:	728092	2.634		Excavato	r:	JCB 3CX	
Client	t:	Galway County Co	uncil		Elevation:	45.28			Logged E	By:	M. Kaliski	
Engin	ieer:	SDS Design Engin	eers		Dimensions (LxWxD) (m)	3.40 x	0.50 x	2.70	Status:		FINAL	
Level	(mbgl)		Stratum Descript	'	(LXVVXD) (III)	Legend	Level	(mOD) Samp	oles / I	Field Tests	Water
Scale:	Depth	TOPSOIL.	Ottatum Descript			ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ	Scale:	Depth	n: Depth	Тур	e Result	Strike
1.5 — 2.0 — 2.5 —	0.80	content. Sand is fine subrounded of limes limestone. Firm grey slightly sa content. Sand is fine subrounded of limes limestone. Firm becoming stiff genedium cobble and is fine to coarse, ang	grey slightly sandy gravellar to subrounded of lin	fine to coarse, angular to subround AY with medium fine to coarse, angular to subround average avelly silty CLA and is fine to coarsof limestone. Coarsof limestone.	cobble angular to nded of cobble angular to nded of conded of cond		45.0 — 44.5 — 44.5 — 44.0 — 43.5 — 43.0 —	44.48	0.50	B B	MK02	
_	2.70	Pit terminated due to	o pit wall instability, Pit terminated at 2.7	70m			42.5 - -	42.58	3			
	And the second	Termination:	Pit Wall Stability:	Groundwater	Rate: Rema	arks:		•	Key:		·	
		Pit wall instability.	Instability below 1.50mbgl.	Dry	-					Sma = Und	disturbed ill disturbed listurbed CBI onmental	₹

	act No: 379		-	Γrial Pit Lo	og						Trial Pit	
Contract:		Gort Mhaoilir		Eastir	ıg:	: 549482.689 Date:		Date:	01/11/2024			
Location:		Athenry, Co. Galwa	у	Northi	ng:	g: 728064.657		Excavator:		JCB 3CX		
Client	t:	Galway County Council Elevation: 46.0		46.04	16.04 Lo		Logged E	3y:	M. Kaliski			
Engin	eer:	SDS Design Engineers Dimensions (LxWxD) (m): 2.80 x 0.50 x		3.00	0 Status:		FINAL					
Level	(mbgl)		Stratum Descript	,,		Legend	Level	(mOD) Samp	oles / F	Field Tests	Water
Scale:	Depth	TOPSOIL.	Stratum Descript			Legenu	Scale:	Depth	n: Depth	Тур	e Result	Strike
1.5 — 2.0 — 2.5 —	0.40	Firm becoming stiff g cobble and low bould fine to coarse, angula boulders are angular diameter).	der content. Sand is f ar to subrounded of li	ine to coarse. Grave mestone. Cobbles a	is nd	게 이렇는 하는	46.0 — 45.5 — 45.0 — 44.5 — 44.0 — 44.0 —	45.64	1.00	B	MK04	
-	3.00		Dia				43.5	- - 43.04	2.60	В	MK06	
	0.00	Termination:	Pit terminated at 3.00 Pit Wall Stability:	Groundwater Rate:	Rema	rks:		.0.0-	Key:			
		Scheduled depth.	Pit walls stable.	Dry	-				B = D = CBR	Bulk Smal = Und	disturbed Il disturbed isturbed CBF onmental	₹

TP01 Sidewall

TP01 Spoil

TP02 Sidewall

TP02 Spoil

TP03 Sidewall

TP03 Spoil

TP04 Sidewall

TP04 Spoil

TP05 Sidewall

TP05 Spoil

TP06 Sidewall

TP06 Spoil

TP07 Sidewall

TP07 Spoil

Appendix 3 Soakaway Test Results and Photographs

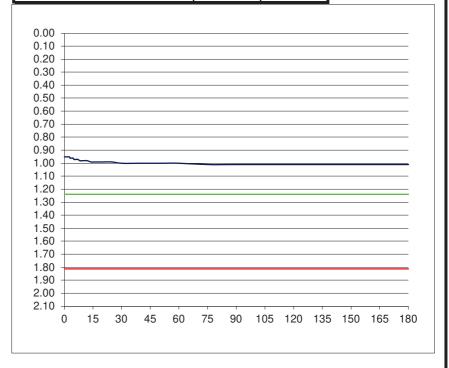
Project Reference:	6379
Contract name:	Gort Mhaoilir
Location:	Athenry, Co. Galway

Test No: INF01

Date: 10/12/2024

Ground Cond	itions	
From	То	
0.00	0.50	TOPSOIL.
0.50	2.10	Firm becoming stiff grey slightly sandy gravelly silty CLAY with medium cobble and boulder content.
		·

0.00	20
Elapsed Time	Fall of Water
(mins)	(m)
0	0.95
0.5	0.95
1	0.95
1.5	0.95
2 2.5	0.95
2.5	0.95
3	0.96
3.5	0.96
4	0.96
4.5	0.96
5	0.97
6	0.97
7	0.97
8	0.98
9	0.98
10	0.98
12	0.98
14	0.99
16	0.99
18	0.99
20	0.99
25	0.99
30	1.00
40	1.00
50	1.00
60	1.00
75	1.01
90	1.01


120

180

1.01

1.01

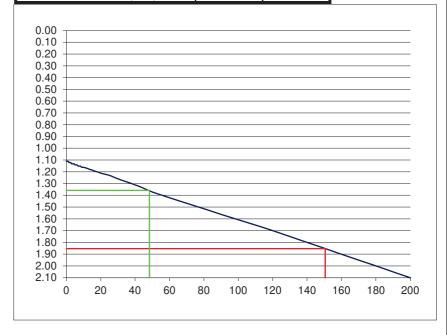
Pit Dimensions (m)		
Length (m)	2.50	m
Width (m)	0.60	m
Depth	2.10	m
Water		
Start Depth of Water	0.95	m
Depth of Water	1.15	m
75% Full	1.24	m
25% Full	1.81	m
75%-25%	0.58	m
Volume of water (75%-25%)	0.86	m3
Area of Drainage	13.02	m2
Area of Drainage (75%-25%)	5.07	m2
Time		
75% Full	N/A	min
25% Full	N/A	min
Time 75% to 25%	N/A	min
Time 75% to 25% (sec)	N/A	sec

f = Fail or Fail m/min

Project Reference:	6379
Contract name:	Gort Mhaoilir
Location:	Athenry, Co. Galway
Test No:	INF02

 Test No:
 INF02

 Date:
 10/12/2024


Ground Con	Ground Conditions					
From	То					
0.00	0.70	MADE GROUND: brown sandy slightly gravelly silty clay with some plastic				
		fragments.				
0.70	1.00	Soft brown sandy slightly gravelly silty CLAY.				
1.00	1.90	Firm grey brown slightly sandy gravelly silty CLAY with low cobble content.				
1.90	2.10	Stiff grey slightly sandy gravelly silty CLAY with medium cobble content.				

1.00	1.50		
1.90	2.10		
Elapsed Time	Fall of Water		
(mins)	(m) 1.11		
0			
0.5	1.11		
1	1.11		
1.5	1.12		
2	1.12		
2.5	1.12		
3	1.13		
3.5	1.13		
4	1.13		
4.5	1.13		
5	1.14		
6 7	1.14		
	1.15		
8	1.15		
9	1.16		
10	1.16		
12	1.17		
14	1.18		
16	1.19		
18	1.20		
20	1.21		
25	1.23		
30	1.26		
40	1.31		
50	1.37		
60	1.42		
90	1.56		
120	1.70		
150	1.85		

180

200

grey slightly sailuy gravelly slity	OLAT WILL	i inediani c
Pit Dimensions (m)		
Length (m)	2.50	m
Width (m)	0.60	m
Depth	2.10	m
Water		
Start Depth of Water	1.11	m
Depth of Water	0.99	m
75% Full	1.36	m
25% Full	1.85	m
75%-25%	0.50	m
Volume of water (75%-25%)	0.74	m3
Area of Drainage	13.02	m2
Area of Drainage (75%-25%)	4.57	m2
Time		
75% Full	48.33	min
25% Full	150.5	min
Time 75% to 25%	102.17	min
Time 75% to 25% (sec)	6130.2	sec

 $f = \underbrace{0.00159}_{m/min} \text{ or }$

2.00

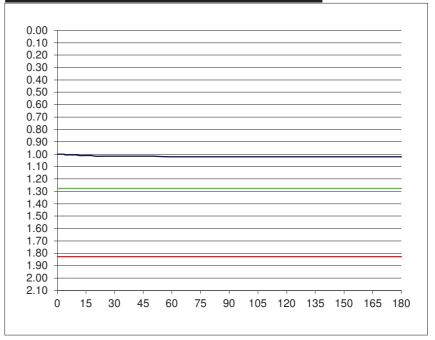
2.10

2.65E-05 m/s

Project Reference:	6379
Contract name:	Gort Mhaoilir
Location:	Athenry, Co. Galway
	11.1500

 Test No:
 INF03

 Date:
 01/11/2024


- 4.10 :		• 11 11 11 11 11 11 11 11 11 11 11 11 11			
Ground Conditions					
From To					
0.00	0.20	TOPSOIL.			
0.20 0.90		Grey very silty sandy GRAVEL with high cobble and low boulder content.			
		Firm becoming stiff grey slightly sandy gravelly silty CLAY with high cobble and low boulder content.			

0.90	2.10
Elapsed Time	Fall of Water
(mins)	(m)
0	1.00
0.5	1.00
1	1.00
1.5	1.00
2	1.00
2.5	1.00
3	1.00
3.5 4	1.00
4	1.01
4.5	1.01
5	1.01
6	1.01
7	1.01
8	1.01
9	1.01
10	1.01
12	1.01
14	1.01
16	1.01
18	1.01
20	1.02
25	1.02
30	1.02
40	1.02
50	1.02
60	1.02
75	1.02
90	1.02

120

180

ow boulder content.		
Pit Dimensions (m)		
Length (m)	3.30	m
Width (m)	0.40	m
Depth	2.10	m
Water		
Start Depth of Water	1.00	m
Depth of Water	1.10	m
75% Full	1.28	m
25% Full	1.83	m
75%-25%	0.55	m
Volume of water (75%-25%)	0.73	m3
Area of Drainage	15.54	m2
Area of Drainage (75%-25%)	5.39	m2
Time		
75% Full	N/A	min
25% Full	N/A	min
Time 75% to 25%	N/A	min
Time 75% to 25% (sec)	N/A	sec

 $f = Fail \text{ or } Fail \\ m/min m/s$

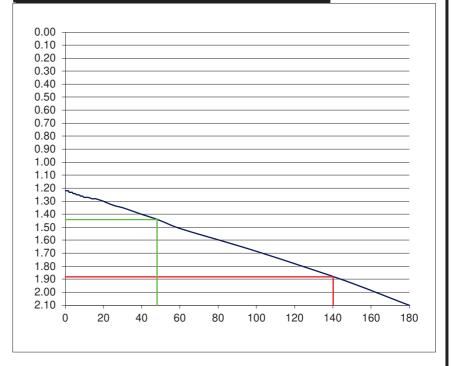
1.02

1.02

Project Reference: 6379
Contract name: Gort Mhaoilir
Location: Athenry, Co. Galway

 Test No:
 INF04

 Date:
 10/12/2024


Ground	Conditions

From	То	
0.00	0.40	TOPSOIL.
0.40	2.10	Firm becoming stiff grey slightly sandy gravelly silty CLAY with medium
		cobble and boulder content.

Elapsed Time	Fall of Water
(mins)	(m) 1.22
0	
0.5	1.22
1	1.22
1.5	1.22
2	1.23
2.5	1.23
3	1.23 1.23
3.5	1.23
4	1.24
4.5	1.24
5	1.24
6	1.25
7	1.25
8	1.26
9	1.26 1.27
10	
12	1.27
14	1.28
16	1.28
18	1.29
20	1.30
25	1.33
30	1.35
40	1.40
50	1.45
60	1.51
90	1.64
120	1.78
150	1.93
400	0 4 0

180

Pit Dimensions (m)		
Length (m)	2.70	m
Width (m)	0.60	m
Depth	2.10	m
Water		
Start Depth of Water	1.22	m
Depth of Water	0.88	m
75% Full	1.44	m
25% Full	1.88	m
75%-25%	0.44	m
Volume of water (75%-25%)	0.71	m3
Area of Drainage	13.86	m2
Area of Drainage (75%-25%)	4.52	m2
Time		
75% Full	48	min
25% Full	140	min
Time 75% to 25%	92	min
Time 75% to 25% (sec)	5520	sec

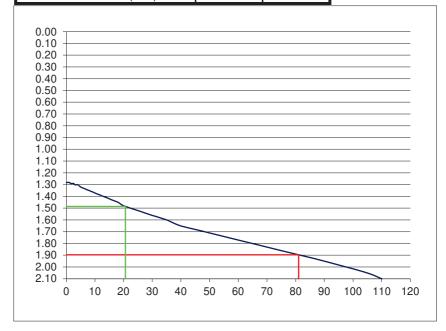
 $f = \underbrace{0.00171}_{m/min} \text{ or }$

2.10

2.85E-05 m/s

Project Reference:	6379
Contract name:	Gort Mhaoilir
Location:	Athenry, Co. Galway
Test No:	INF05
Date:	10/12/2024

Date:


Ground Cond	ditions	
From	То	
0.00	0.60	MADE GROUND: grey sandy slightly gravelly silty clay with medium cobble
		content and some plastic fragments.
0.60	0.80	Firm brown sandy slightly gravelly silty clay with medium cobble content.
0.80	2.10	Firm becoming stiff grey slightly sandy gravelly silty CLAY with medium
		cobble and boulder content.

0.80	2.10
Elapsed Time	Fall of Water
(mins)	(m)
0	1.28
0.5	1.28
1	1.28
1.5	1.29
2	1.29
2.5	1.29
3	1.30
3.5	1.30
4	1.30
4.5	1.31
5	1.32
6	1.33
7	1.34
8	1.35
9	1.36
10	1.37
12	1.39
14	1.41
16	1.43
18	1.45
20	1.48
25	1.52
30	1.56
35	1.60
40	1.65
50	1.71
60	1.77
75	1.86
90	1.95

105

110

ie and boulder content.		
Pit Dimensions (m)		
Length (m)	2.60	m
Width (m)	0.60	m
Depth	2.10	m
Water		
Start Depth of Water	1.28	m
Depth of Water	0.82	m
75% Full	1.49	m
25% Full	1.90	m
75%-25%	0.41	m
Volume of water (75%-25%)	0.64	m3
Area of Drainage	13.44	m2
Area of Drainage (75%-25%)	4.18	m2
Time		
75% Full	20.6	min
25% Full	81	min
Time 75% to 25%	60.4	min
Time 75% to 25% (sec)	3624	sec

f = 0.00253 or m/min

2.05

2.10

4.22E-05 m/s

INF1 Sidewall

INF1 Spoil

INF2 Sidewall

INF2 Spoil

INF3 Sidewall

INF3 Spoil

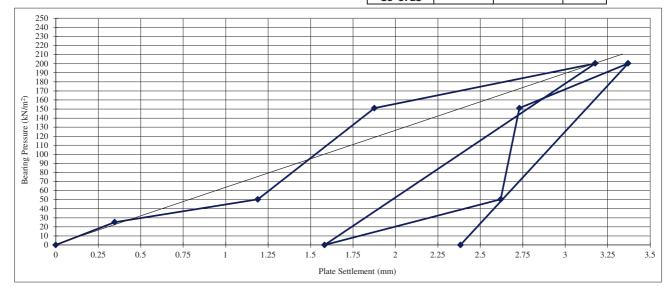
INF4 Sidewall

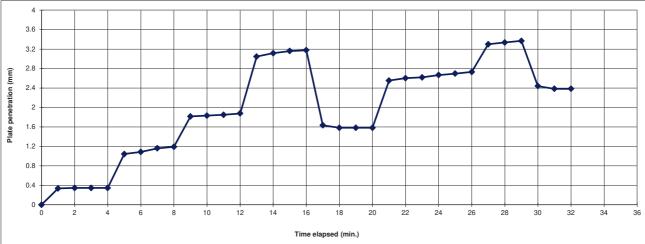
INF4 Spoil

INF5 Sidewall

INF5 Spoil

Appendix 4 Plate Test Results


Plate Bearing Test in accordance with BS 1377: Part 9 and Part 2 HD 25/94

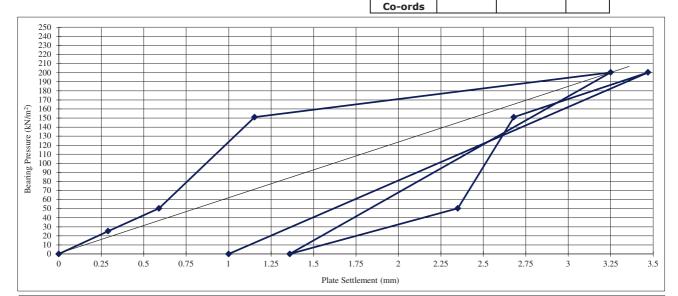

Site Investigations Ltd., Carhugar The Grange, 12th Lock Road, Lucan, Co. Dublin Tel: 01 6108768 Email:info@siteinvestigations.ie

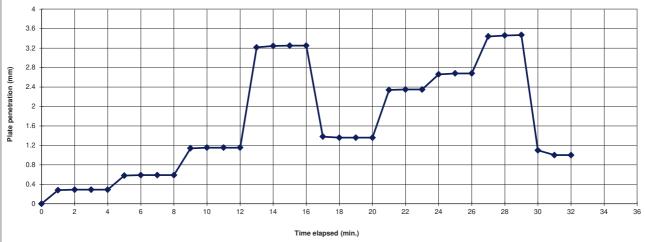
Client	Galway County Council		
Site	Gort Mhaoilir	, Athenry	
Test Date	08-Nov-24		
Location:	PT01		
	Plate Dian	neter:	600mm
Type of reac	tion Load	13tonne trac	ked excavator
Materia	l Type:	slightly sandy slight	tly gravelly silty CLAY
D	epth test ca	rried out:	0.50m BGL
СВі	R value is as	per specification for	762mm Plate

1.25mm settlement (graph) for 762mm Plate (kPa)	79
Equivalent CBR Value-Initial loading (%)	18.7
Mod. of subgrade Reaction k for 600mm Plate(kPa)	67
Correction factor for 600mm Plate	0.85

Pressure Stages	Bearing Pressure (kN/m²)	Plate Settlement (mm)
Initial	0.0	0.00
	25	0.35
	50	1.19
	151	1.88
	200	3.18
	0.0	1.58
Reload	50	2.62
	151	2.73
	200	3.37
Final Condition	0.0	2.38
ITM	Easting	Northing
Co-ords		

03/12/2024 _____Site Investigatins Ltd.


Plate Bearing Test in accordance with BS 1377: Part 9 and Part 2 HD 25/94


Site Investigations Ltd., Carhugar The Grange, 12th Lock Road, Lucan, Co. Dublin Tel: 01 6108768 Email:info@siteinvestigations.ie

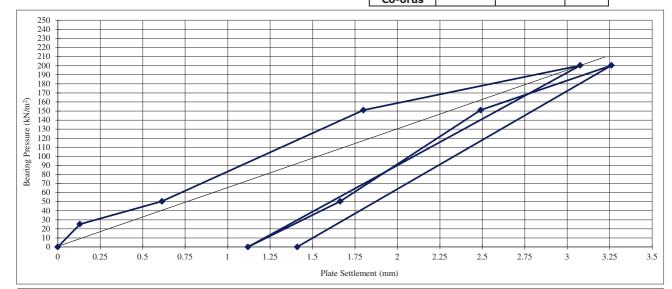
Client	Galway County Council		
Site	Gort Mhaoilir, Athenry		
Test Date	08-Nov-24		
Location:	PT02		
	Plate Dian	neter:	600mm
Type of reac	ype of reaction Load 13tonne tracked excavator		
Materia	Material Type: slightly sandy slightly gravelly silty (tly gravelly silty CLAY
D	Depth test carried out: 0.50m BGL		
СВі	R value is as	per specification for	762mm Plate

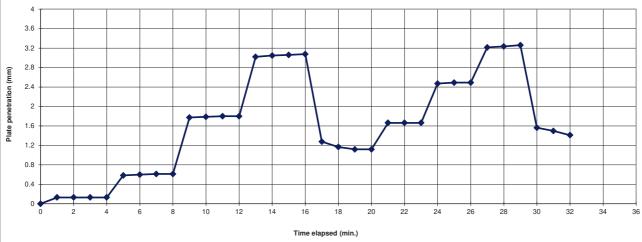
1.25mm settlement (graph) for 762mm Plate (kPa)	77
Equivalent CBR Value-Initial loading (%)	17.9
Mod. of subgrade Reaction k for 600mm Plate(kPa)	65
Correction factor for 600mm Plate	0.85

Pressure Stages	Bearing Pressure (kN/m²)	Plate Settlement (mm)
Initial	0.0	0.00
	25	0.29
	50	0.59
	151	1.15
	200	3.25
	0.0	1.36
Reload	50	2.35
	151	2.68
	200	3.47
Final Condition	0.0	1.00
ITM	Easting	Northing
Co oudo		

03/12/2024 _____Site Investigatins Ltd.

Plate Bearing Test in accordance with BS 1377: Part 9 and Part 2 HD 25/94


Site Investigations Ltd., Carhugar The Grange, 12th Lock Road, Lucan, Co. Dublin Tel: 01 6108768 Email:info@siteinvestigations.ie

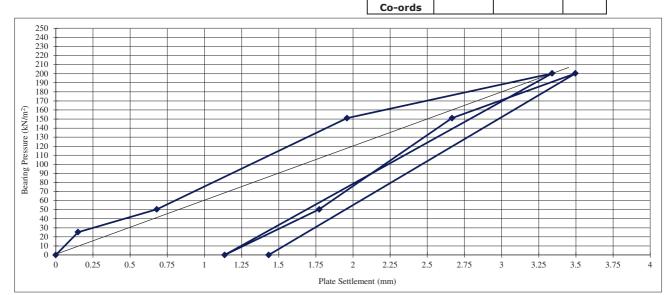

Client	Galway County Council		
Site	Gort Mhaoilir, Athenry		
Test Date	08-Nov-24		
Location:	РТ03		
	Plate Dian	neter:	600mm
Type of reac	pe of reaction Load 13tonne tracked excavator		ked excavator
Material Type: slightly sandy sligh		slightly sandy slight	tly gravelly silty CLAY
D	Depth test carried out: 0.50m BGL		
CBR value is as per specification for 762mm Plate			

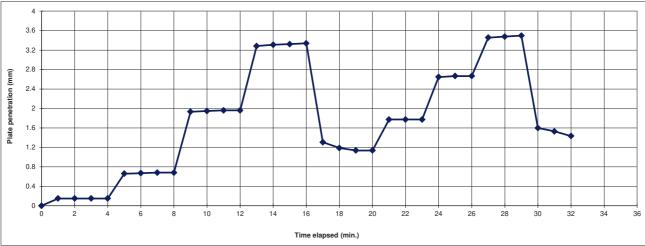
1.25mm settlement (graph) for 762mm Plate (kPa)	81
Equivalent CBR Value-Initial loading (%)	19.6
Mod. of subgrade Reaction k for 600mm Plate(kPa)	69
Correction factor for 600mm Plate	0.85

Pressure Stages	Bearing Pressure (kN/m²)	Plate Settlement (mm)
Initial	0.0	0.00
	25	0.13
	50	0.61
	151	1.80
	200	3.08
	0.0	1.12
Reload	50	1.66
	151	2.49
	200	3.26
Final Condition	0.0	1.41
ITM	Easting	Northing

vel Co-ords

03/12/2024 _Site Investigatins Ltd.


Plate Bearing Test in accordance with BS 1377: Part 9 and Part 2 HD 25/94

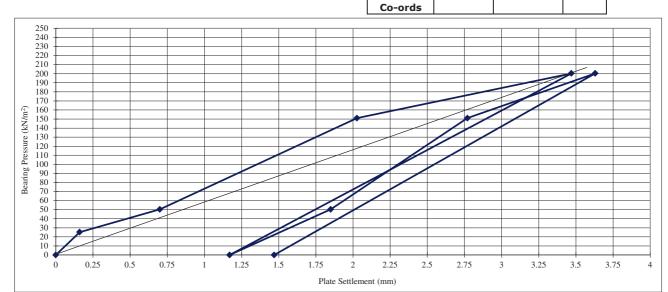

Site Investigations Ltd., Carhugar The Grange, 12th Lock Road, Lucan, Co. Dublin Tel: 01 6108768 Email:info@siteinvestigations.ie

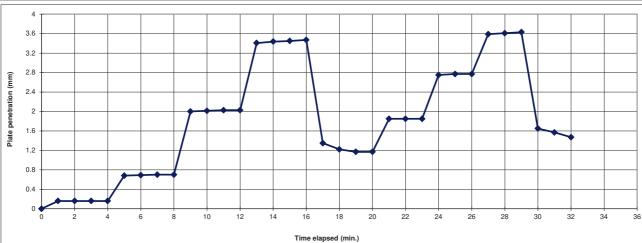
Client	Galway Coun	ty Council	
Site	Gort Mhaoilir	, Athenry	
Test Date	08-Nov-24		
Location:	PT04		
Plate Dian		neter:	600mm
Type of reaction Load		13tonne tracked excavator	
Material Type:		slightly sandy slightly gravelly silty CLAY	
Depth test car		rried out:	0.50m BGL
CBR value is as per specification for 762mm Plate			762mm Plate

1.25mm settlement (graph) for 762mm Plate (kPa)	74
Equivalent CBR Value-Initial loading (%)	16.7
Mod. of subgrade Reaction k for 600mm Plate(kPa)	63
Correction factor for 600mm Plate	0.85

Pressure Stages	Bearing Pressure (kN/m²)	Plate Settlement (mm)
Initial	0.0	0.00
	25	0.15
	50	0.68
	151	1.96
	200	3.34
	0.0	1.14
Reload	50	1.77
	151	2.67
	200	3.50
Final Condition	0.0	1.43
ITM	Easting	Northing
0		1

03/12/2024 _____Site Investigatins Ltd.

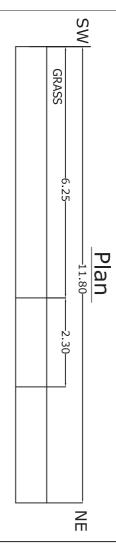

Plate Bearing Test in accordance with BS 1377: Part 9 and Part 2 HD 25/94


Site Investigations Ltd., Carhugar The Grange, 12th Lock Road, Lucan, Co. Dublin Tel: 01 6108768 Email:info@siteinvestigations.ie

Client	Galway Coun	ty Council	
Site	Gort Mhaoilir	, Athenry	
Test Date	08-Nov-24		
Location: PT05			
Plate Diam		neter:	600mm
Type of reaction Load		13tonne tracked excavator	
Material Type:		slightly sandy slightly gravelly silty CLAY	
Depth test car		rried out:	0.50m BGL
CBR value is as per specification for 762mm Plate			762mm Plate

1.25mm settlement (graph) for 762mm Plate (kPa)	71
Equivalent CBR Value-Initial loading (%)	15.6
Mod. of subgrade Reaction k for 600mm Plate(kPa)	60
Correction factor for 600mm Plate	0.85

Pressure Stages	Bearing Pressure (kN/m²)	Plate Settlement (mm)
Initial	0.0	0.00
	25	0.16
	50	0.70
	151	2.03
	200	3.47
	0.0	1.17
Reload	50	1.85
	151	2.77
	200	3.63
Final Condition	0.0	1.47
ITM	Easting	Northing
0		



03/12/2024 _____Site Investigatins Ltd.

Appendix 5 Slit Trench Log

ST01

Cross Section

Black discolouration to 1.10mbgl

Services

No:
Diameter
Colour:
Utility:
Distance:
Depth:
Alignment:

Ground Conditions

1.20m Firm grey slightly sandy gravelly silty CLAY with high cobble and low boulder content (up to 300mm diameter).	1.20m	0.90m	
0.20m 0.90m Firm brown slightly sandy silty gravelly silty CLAY with low cobble content.	0.90m	0.20m	
0.00m 0.20m TOPSOIL.	0.20m	0.00m	
Description:	To:	From:	

Trench Dimensions

45.45	728085.262	549498.902	End
45.82	728076.583	549490.866	Start
Level	Northing:	Easting:	Point:

1.20m	0.70m	11.80m
Depth:	Width:	Length:

Photographs

	-	_
•		
	SITE INVESTIGATIONS LTD	
)	0	

Gort Mhaolir, Athenry

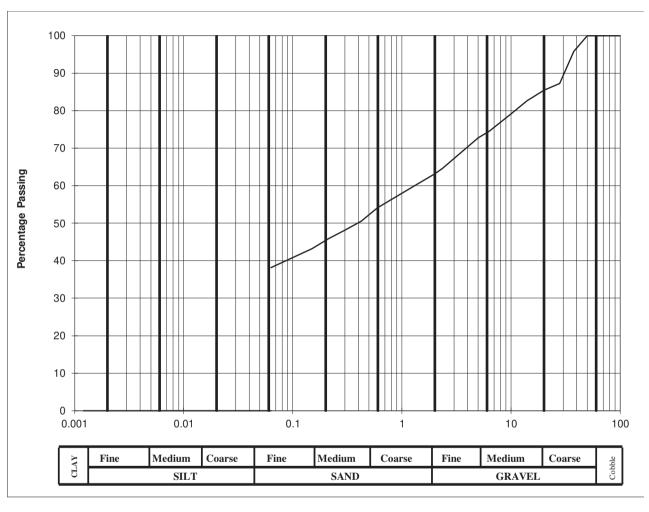
Galway County Council

Consultant: SDS Design Engineers

Scale:
NOT TO SCALE, ALL DISTANCES IN m
DEPTH ARE TO THE TOP OF SERVICES M. Kaliski Excavation Started: 01/11/2024 Excavation Finished: 01/11/2024 CONTRACT NUMBER

6379

Appendix 6 Geotechnical Laboratory Test Results

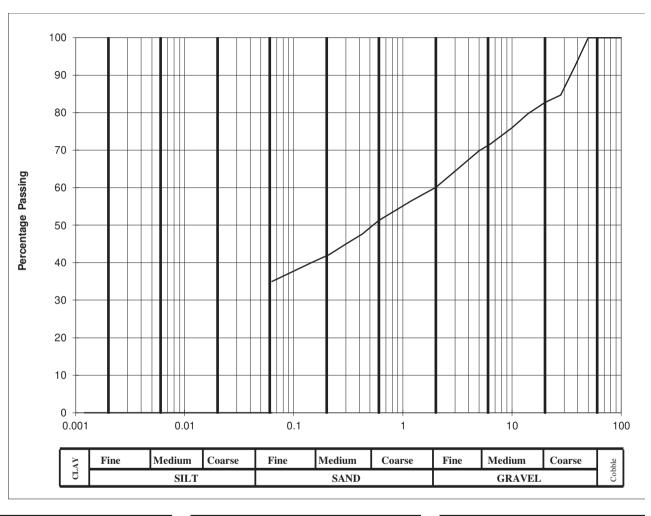

Classification Tests In accordance with BS 1377: Part 2

Client	Galway County Council
Site	Gort Mhaoilir, Athenry
S.I. File No	6379 / 24
Test Lab	Site Investigations Ltd., Carhugar The Grange, 12th Lock Rd., Lucan Co. Dublin. Tel (01) 6108768 Email:info@siteinvestigations.ie
Report Date	18th November 2024

Hole ID	Depth	Sample	Lab Ref	Sample	Natural	Liquid	Plastic	Plastic	Bulk	Specific	%	Comments	Remarks C=Clay; M=Silt
		No	No.	Type	Moisture	Limit	Limit	Index	Density	gravity	passing		Plasticity: L=Low;
					Content	%	%	%	g/cm ³		425um		I=Intermediate; H=High;
					%				C				V=Very High; E=Extremely
													High
TP01	1.00	MK13	24/1679	В	9.9	35	21	14			50.5		CL/CI
TP02	1.00	MK10	24/1680	В	7.5	33	20	13			47.6		CL
TP05	1.00	MK07	24/1681	В	6.3	28	19	9			35.7		CL
TP06	1.00	MK02	24/1682	В	10.0	34	21	13		·	52.3		CL
TP07	1.00	MK05	24/1683	В	7.9	29	20	9		·	44.0		CL

BS Sieve	Percent	Hydrometer	analysis
size, mm	passing	Diameter, mm	% passing
100	100	0.0630	
90	100	0.0200	
75	100	0.0060	
63	100	0.0020	
50	100		
37.5	95.8		
28	87.2		
20	85.4		
14	82.6		
10	79.1		
6.3	74.5		
5.0	72.7		
2.36	64.6		
2.00	63.2		
1.18	59.2		
0.600	54.1		
0.425	50.5		
0.300	48.1		
0.212	45.8		
0.150	43.2		
0.063	38		

Cobbles, %	0
Gravel, %	37
Sand, %	25
Clay / Silt, %	38

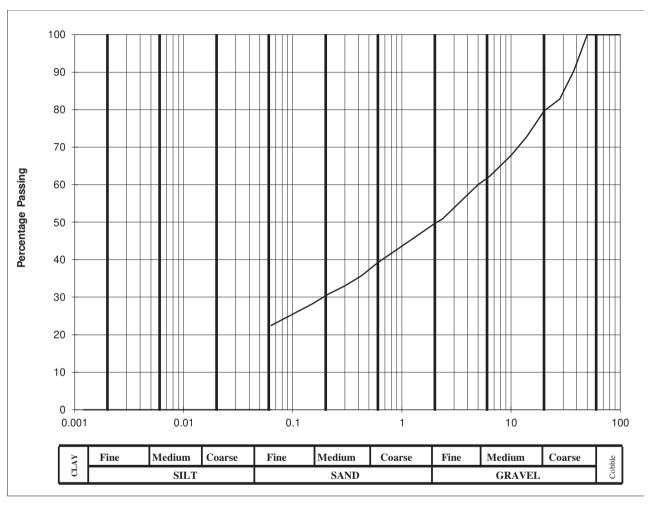


(Client:	Galway County Council	Lab. No:	24/1679	Hole ID:	TP 01	
	roject:	Gort Mhaoilir, Athenry	Sample No:	MK13	Depth, m:	1.00	

Material description:	slightly sandy gravelly silty CLAY
	Soils with clay or silt content between 15% - 35% can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour.
Remarks:	Where material is for re-use and therefore disturbed, only soils with clay or silt >35% are classified as clay or silt

BS Sieve	Percent	Hydrometer	analysis
size, mm	passing	Diameter, mm	% passing
100	100	0.0630	
90	100	0.0200	
75	100	0.0060	
63	100	0.0020	
50	100		
37.5	92.3		
28	84.7		
20	82.7		
14	79.7		
10	76		
6.3	71.6		
5.0	69.8		
2.36	61.8		
2.00	60.1		
1.18	56.4		
0.600	51.2		
0.425	47.6		
0.300	45		
0.212	42.2		
0.150	40.2		
0.063	35		

Cobbles, %	0
Gravel, %	40
Sand, %	25
Clay / Silt, %	35

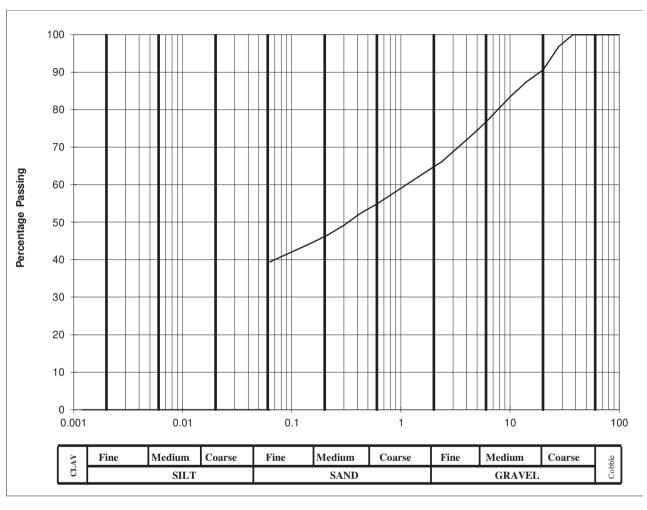


Client:	Galway Council	Lab. No:	24/1680] !	Hole ID:	TP 02
Project:	Gort Mhaoilir, Athenry	Sample No:	MK10] !	Depth, m:	1.00

L	Material description :	slightly sandy gravelly silty CLAY
ſ		Soils with clay or silt content between 15% - 35% can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour.
L	Remarks	Where material is for re-use and therefore disturbed, only soils with clay or silt >35% are classified as clay or silt

BS Sieve	Percent	Hydrometer	analysis
size, mm	passing	Diameter, mm	% passing
100	100	0.0630	
90	100	0.0200	
75	100	0.0060	
63	100	0.0020	
50	100		
37.5	90.3		
28	82.8		
20	79.6		
14	72.9		
10	67.8		
6.3	62.1		
5.0	60		
2.36	50.9		
2.00	49.7		
1.18	45.1		
0.600	39.2		
0.425	35.7		
0.300	33		
0.212	30.8		
0.150	28.2		
0.063	23		

Cobbles, %	0
Gravel, %	50
Sand, %	27
Clay / Silt, %	23

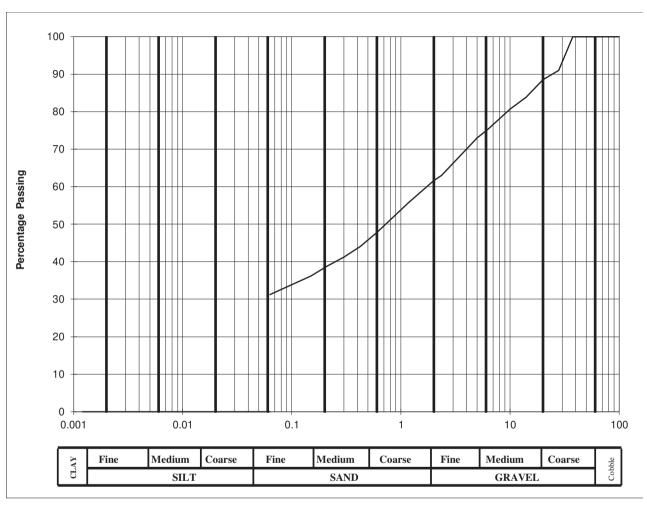


Client:	Galway Council	Lab. No:	24/1681	Hole ID :	TP 05
Project:	Gort Mhaoilir, Athenry	Sample No:	MK07	Depth, m:	1.00

Material description:	slightly sandy gravelly silty CLAY
Damanisa	Soils with clay or silt content between 15% - 35% can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour.
Remarks:	Where material is for re-use and therefore disturbed, only soils with clay or silt >35% are classified as clay or silt

BS Sieve	Percent	Hydrometer	analysis
size, mm	passing	Diameter, mm	% passing
100	100	0.0630	
90	100	0.0200	
75	100	0.0060	
63	100	0.0020	
50	100		
37.5	100		
28	96.8		
20	90.6		
14	87.3		
10	83.4		
6.3	77.3		
5.0	74.4		
2.36	66.1		
2.00	64.8		
1.18	60.4		
0.600	54.8		
0.425	52.3		
0.300	49.2		
0.212	46.5		
0.150	44.4		
0.063	40		

Cobbles, %	0
Gravel, %	35
Sand, %	25
Clay / Silt, %	40



Client:	Galway Council	Lab. No:	24/1682	Hole ID:	TP 06
Project:	Gort Mhaoilir, Athenry	Sample No:	MK02	Depth, m:	1.00

Material description :	slightly sandy gravelly silty CLAY
	Soils with clay or silt content between 15% - 35% can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour.
Remarks :	Where material is for re-use and therefore disturbed, only soils with clay or silt >35% are classified as clay or silt

BS Sieve	Percent	Hydrometer	analysis
size, mm	passing	Diameter, mm	% passing
100	100	0.0630	
90	100	0.0200	
75	100	0.0060	
63	100	0.0020	
50	100		
37.5	100		
28	91		
20	88.5		
14	83.8		
10	80.7		
6.3	75.4		
5.0	73		
2.36	63		
2.00	61.6		
1.18	55.8		
0.600	47.7		
0.425	44		
0.300	41.2		
0.212	38.8		
0.150	36.2		
0.063	31		

Cobbles, %	0
Gravel, %	38
Sand, %	31
Clay / Silt, %	31

Client:	Galway Council	Lab. No :	24/1683	Hole ID:	TP 07
Project:	Gort Mhaoilir, Athenry	Sample No:	MK05	Depth, m:	1.00

Material description:	slightly sandy gravelly silty CLAY
Damarla	Soils with clay or silt content between 15% - 35% can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour.
Remarks:	Where material is for re-use and therefore disturbed, only soils with clay or silt >35% are classified as clay or silt

Chemical Testing In accordance with BS 1377: Part 3

Client	Galway County Council
Site	Gort Mhaoilir, Athenry
S.I. File No	6379 / 24
Test Lab	Site Investigations Ltd., Carhugar The Grange, 12th Lock Rd., Lucan Co. Dublin. Tel (01) 6108768 Email:info@siteinvestigations.ie
Report Date	18th November 2024

Hole Id	Depth	Sample	Lab Ref	pН	Water Soluble	Water Soluble	Acid Soluble	Acid Soluble	Chloride	% passing
	(mBGL)	No		Value	Sulphate Content	Sulphate Content	Sulphate Content	Sulphate Content	ion	2mm
					(2:1 Water-soil	(2:1 Water-soil	(2:1 Water-soil	(2:1 Water-soil	Content	
					extract) (SO ₃)	(water:soil				
					g/L	%	g/L	%	ratio 2:1)	
									%	
TP01	1.00	MK13	24/1679	8.85	0.126	0.076			0.25	60.1
TP02	1.00	MK10	24/1680	8.73	0.119	0.069			0.22	63.2
TP05	1.00	MK07	24/1681	8.76	0.116	0.058			0.24	49.7
TP06	1.00	MK02	24/1682	8.72	0.124	0.081			0.21	64.8
TP07	1.00	MK05	24/1683	8.75	0.123	0.076			0.26	61.6

Appendix 7 Environmental Laboratory Test Results

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside CH5 3US

Tel: (01244) 528777

email: hawardencustomerservices@alsglobal.com Website: www.alsenvironmental.co.uk

Site Investigations Ltd The Grange Carhugar 12th Lock Road Lucan Co. Dublin

Attention: Stephen Letch

CERTIFICATE OF ANALYSIS

Date of report Generation: 19 November 2024 **Customer:** Site Investigations Ltd

Sample Delivery Group (SDG): 241108-121 Your Reference: 6379

Location: Gort Mhaolair, Athenry, G. Galway

Report No: 747092 Order Number: 40/B/24

We received 5 samples on Friday November 08, 2024 and 5 of these samples were scheduled for analysis which was completed on Tuesday November 19, 2024. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALS Laboratories (UK) Limited Hawarden.

All sample data is provided by the customer. The reported results relate to the sample supplied, and on the basis that this data is correct.

Incorrect sampling dates and/or sample information will affect the validity of results.

The customer is not permitted to reproduce this report except in full without the approval of the laboratory.

Approved By:

Lauren Ellis

VIII

General Manager Western Europe Environmental

Version: 3.7 Version Issued: 24/07/2024

Validated

SDG: 241108-121 Client Ref.: 6379 Report Number: 747092 Superseded Report: Location: Gort Mhaolair, Athenry, G. Galway

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
30638262	ST 01		0.40 - 0.40	05/11/2024
30638257	TH 01		0.50 - 0.50	05/11/2024
30638258	TH 02		0.50 - 0.50	05/11/2024
30638259	TH 06		0.50 - 0.50	05/11/2024
30638261	TH 07		0.50 - 0.50	05/11/2024

Only received samples which have had analysis scheduled will be shown on the following pages.

Report Number: 747092 Superseded Location: Gort Mhaolair, Athenry, G. Galway **SDG:** 241108-121 **Client Ref.:** 6379 Superseded Report:

X Test No Determination Possible	X Test Lab Sample No(s) No Determination				30638262			30638257			30638258			30638259			30638261
Sample Types -	Customo Sample Refe				ST 01			TH 01			TH 02			TH 06			TH 07
S - Soil/Solid UNS - Unspecified Solid GW - Ground Water SW - Surface Water LE - Land Leachate	AGS Refere	ence															
PL - Prepared Leachate PR - Process Water SA - Saline Water TE - Trade Effluent TS - Treated Sewage US - Untreated Sewage	Depth (r	n)			0.40 - 0.40			0.50 - 0.50			0.50 - 0.50			0.50 - 0.50			0.50 - 0.50
RE - Recreational Water DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge G - Gas OTH - Other	Contain	er	1 kg TUB with Handle (ALE260)	250g Amber Jar (ALE210)	60g VOC (ALE215)	1 kg TUB with Handle (ALE260)	250g Amber Jar (ALE210)	60g VOC (ALE215)	1 kg TUB with Handle (ALE260)	250g Amber Jar (ALE210)	60g VOC (ALE215)	1 kg TUB with Handle (ALE260)	250g Amber Jar (ALE210)	60g VOC (ALE215)	1kg TUB with Handle (ALE260)	250g Amber Jar (ALE210)	60g VOC (ALE215)
	Sample Ty	ype	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S
Anions by Kone (w)	All	NDPs: 0 Tests: 5	Х			X			X			X			X		
CEN Readings	All	NDPs: 0 Tests: 5	Х			X			X			X			X		
Chromium III	All	NDPs: 0 Tests: 5		X			X			X			X			X	
Coronene	All	NDPs: 0 Tests: 5		Х			Х			X			Х			Х	
Dissolved Metals by ICP-MS	All	NDPs: 0 Tests: 5	Х			Х			Х			Х			Х		
Dissolved Organic/Inorganic Carbon	All	NDPs: 0 Tests: 5	Х			Х			Х			Х			Х		
EPH by GCxGC-FID	All	NDPs: 0 Tests: 5		X			X			X			X			X	
EPH CWG GC (S)	All	NDPs: 0 Tests: 5		Х			Х			Х			Х			X	
Fluoride	All	NDPs: 0 Tests: 5	Х			Х			Х			Х			Х		
GRO by GC-FID (S)	All	NDPs: 0 Tests: 5			X			Х			Х			X			X
Hexavalent Chromium (s)	All	NDPs: 0 Tests: 5		X			X			X			X			X	
Loss on Ignition in soils	All	NDPs: 0 Tests: 5		X			X			X			X			X	
Mercury Dissolved	All	NDPs: 0 Tests: 5	Х			Х			Х			Х			X		
Metals in solid samples by OES	All	NDPs: 0 Tests: 5		Х			Х			Х			Х			Х	
PAH 16 & 17 Calc	All	NDPs: 0 Tests: 5		Х			Х			X			Х			X	

SDG: 241108-121 Client Ref.: 6379 Report Number: 747092 Superseded Report: Location: Gort Mhaolair, Athenry, G. Galway

	0379								/IIIau	,		,,					
Results Legend X Test No Determination	Lab Sample	No(s)			30638262			30638257			30638258			30638259			30638261
Possible Sample Types -	Customo Sample Refe				ST 01			TH 01			TH 02			TH 06			TH 07
S - Soil/Solid UNS - Unspecified Solid GW - Ground Water SW - Surface Water LE - Land Leachate	AGS Refere	ence															
PL - Prepared Leachate PR - Process Water SA - Saline Water TE - Trade Effluent TS - Treated Sewage US - Untreated Sewage	Depth (r	n)			0.40 - 0.40			0.50 - 0.50			0.50 - 0.50			0.50 - 0.50			0.50 - 0.50
RE - Recreational Water DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge G - Gas OTH - Other	Contain	er	1 kg TUB with Handle (ALE260)	250g Amber Jar (ALE210)	60g VOC (ALE215)	1 kg TUB with Handle (ALE260)	250g Amber Jar (ALE210)	60g VOC (ALE215)	1 kg TUB with Handle (ALE260)	250g Amber Jar (ALE210)	60g VOC (ALE215)	1 kg TUB with Handle (ALE260)	250g Amber Jar (ALE210)	60g VOC (ALE215)	1 kg TUB with Handle (ALE260)	250g Amber Jar (ALE210)	60g VOC (ALE215)
	Sample Ty	ype	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S
PAH by GCMS	All	NDPs: 0 Tests: 5		X			Х			X			Х			X	
PCBs by GCMS	All	NDPs: 0 Tests: 5		X			Х			X			Х			X	
рН	All	NDPs: 0 Tests: 5		Х			Х			X			Х			X	
pH Value of Filtered Water	All	NDPs: 0 Tests: 5	Х			X			X			X			X		
Phenols by HPLC (W)	All	NDPs: 0 Tests: 5	Х			Х			Х			X			X		
Sample description	All	NDPs: 0 Tests: 5		Х			Х			X			Х			Х	
Total Organic Carbon	All	NDPs: 0 Tests: 5		Х			Х			X			Х			X	
TPH CWG GC (S)	All	NDPs: 0 Tests: 5		Х			Х			X			Х			Х	
VOC MS (S)	All	NDPs: 0 Tests: 5			X			X			X			X			Х

SDG: 241108-121 Report Number: 747092 Superseded Report: Client Ref.: 6379 Location: Gort Mhaolair, Athenry, G. Galway

Sample Descriptions

Grain Sizes

very fine <0.0	0.063mm fine 0.06	3mm - 0.1mm m	edium 0.1mn	n - 2mm coai	rse 2mm - 1	.0mm very coa
Lab Sample No(s)	Customer Sample Ref.	Depth (m)	Colour	Description	Inclusions	Inclusions 2
30638262	ST 01	0.40 - 0.40	Dark Brown	Silt Loam	Vegetation	Oil/Petroleum
30638257	TH 01	0.50 - 0.50	Dark Brown	Sandy Loam	Stones	Vegetation
30638258	TH 02	0.50 - 0.50	Light Brown	Loamy Sand	Stones	None
30638259	TH 06	0.50 - 0.50	Light Brown	Sandy Clay Loam	Stones	Vegetation
30638261	TH 07	0.50 - 0.50	Light Brown	Sandy Loam	Stones	None

These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally ocurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

SDG: 241108-121 **Client Ref.:** 6379

Report Number: 747092 Superseded Location: Gort Mhaolair, Athenry, G. Galway Superseded Report:

Commission Com									
Companies Comp	M mCERTS accredited.	Cus	tomer Sample Ref.	ST 01	TH 01	TH 02	TH 06	TH 07	
Companies Comp	diss.filt Dissolved / filtered sample. tot.unfiltTotal / unfiltered sample. * Subcontracted - refer to subcontractor repo	rt for	Sample Type Date Sampled	Soil/Solid (S)					
Description Companies Co	** % recovery of the surrogate standard to che efficiency of the method. The results of indi	vidual		08/11/2024	08/11/2024	08/11/2024	08/11/2024	08/11/2024	
Components Component Components Comp	compounds within samples aren't corrected recovery	for the	SDG Ref	241108-121	241108-121	241108-121	241108-121	241108-121	
Mobile Content Faller (Not as received sample) Mobile Content Fall Fall (Not as re	(F) Trigger breach confirmed 1-4+§@ Sample deviation (see appendix)		AGS Reference	30030202	30030237	30030230	30030239	30036201	
Interest processes proce				22	12	3.4	12	٥	
Compare Carbon, Total	received sample)								
PH				М	М	М	M	М	
Communication Communicatio	Organic Carbon, Total	<0.2 %	TM132						
Community Helesowelert Co.6 mg/kg TM151 Co.6 m Co.6 mg Co.6 mg	pH	1 pH Units	TM133						
PCB congener 28	Chromium, Hexavalent	<0.6 mg/kg	TM151	<0.6	<0.6	<0.6	<0.6	<0.6	
PCB congener 52 <3 µg/kg TM168 M M M M M M M M M	PCB congener 28	<3 µg/kg	TM168	<3	<3	<3	<3	<3	
PCB congener 101 \$\alpha\$ gylkg TM168 \$\alpha\$ M M M M M M M M M	PCB congener 52	<3 µg/kg	TM168	<3	<3	<3	<3	<3	
M	PCB congener 101	<3 µg/kg	TM168					<3	
PCB congener 138	PCR congener 118								
PCB congener 153				М	М	M	М	М	
PCB congener 180	PCB congener 138	<3 µg/kg	TM168	1					
PCB congener 180	PCB congener 153	<3 µg/kg	TM168						
Sum of detected PCB 7 Congeners <21 µg/kg	PCB congener 180	<3 µg/kg	TM168	<3	<3	<3			
Antimony	Sum of detected PCB 7 Congeners	<21 µg/kg	TM168						
Arsenic	Chromium, Trivalent	<0.9 mg/kg	TM181	15.9	6.81	3.86	7.2	5.02	
Arsenic Co.6 mg/kg TM181 3.29	Antimony	<0.6 mg/kg	g TM181		1 1	1 1	1 1	1 1	
Barium	Arsenic	<0.6 mg/kg	g TM181	3.29	2.82	1.13	2.88	2.27	
Cadmium	Barium	<0.6 mg/kg	g TM181	37.7	18.5	7.36	20.7	13.7	
Chromium	Cadmium	<0.02 mg/kg	g TM181						
Copper	Chromium	<0.9 mg/kg	TM181						
Lead	Copper								
Molybdenum Co.1 mg/kg TM181 Co.1 M M M M M M M M M				М	M	M	M	M	
Molybdenum				М	М	M	M	M	
# # # # # # # # # # # # # # # # # # #	·			М	М	M	M	M	
Nickel <0.2 mg/kg TM181 18.9 M 10.7 3.89 12.3 8.2 M M M M M M M M M	Molybdenum	<0.1 mg/kg	TM181						
Selenium <1 mg/kg	Nickel	<0.2 mg/kg	TM181	18.9	10.7	3.89	12.3	8.2	
Zinc <1.9 mg/kg	Selenium	<1 mg/kg	TM181	1.41	<1	<1	<1	<1	
PAH Total 17 (inc Coronene) Moisture <10 mg/kg	Zinc	<1.9 mg/kg	TM181	98.5	21.1	4.42	22.7	13.5	
Coronene <200 μg/kg TM410 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200 <200		<10 mg/kg	TM410						
Mineral Oil >C10-C40 <5 mg/kg TM415 35 <5 <5 <5 <5		<200 µg/kg	g TM410	<200	<200	<200	<200	<200	
				35	<5	<5	<5	<5	
		- 39	1			-	-		

SDG: 241108-121 **Client Ref.:** 6379

Superseded Report:

Report Number: 747092 Superseded I Location: Gort Mhaolair, Athenry, G. Galway

Client Re	21 03/9			Location.	JOIL MITAULATI, AL	thenry, G. Galwa	У	
PAH by GCMS Results Legend	Cuet	omor Sampla Dof	CT 04	TU 04	TILOD	THOS	TU 07	
# ISO17025 accredited. M mCERTS accredited.	Cust	omer Sample Ref.	ST 01	TH 01	TH 02	TH 06	TH 07	
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. tot.unfiltTotal / unfiltered sample. * Subcontracted - refer to subcontractor rep accreditation status.		Depth (m) Sample Type Date Sampled Sample Time	0.40 - 0.40 Soil/Solid (S) 05/11/2024	0.50 - 0.50 Soil/Solid (S) 05/11/2024				
** % recovery of the surrogate standard to chefficiency of the method. The results of inc compounds within samples aren't correcte recovery (F) Trigger breach confirmed 1-4-§@ Sample deviation (see appendix)	d for the	Date Received SDG Ref ab Sample No.(s) AGS Reference	08/11/2024 241108-121 30638262	08/11/2024 241108-121 30638257	08/11/2024 241108-121 30638258	08/11/2024 241108-121 30638259	08/11/2024 241108-121 30638261	
Component	LOD/Units	Method						
Naphthalene	<9 µg/kg	TM218	<9 M	<9 M	<9 M	<9 M	<9 M	
Acenaphthylene	<12 µg/kg	TM218	<12 M	<12 M	<12 M	<12 M	<12 M	
Acenaphthene	<8 µg/kg	TM218	<8 M	<8 M	<8 M	<8 M	<8 M	
Fluorene	<10 µg/kg	TM218	<10 M	<10 M	<10 M	<10 M	<10 M	
Phenanthrene	<15 µg/kg	TM218	<15 M	<15 M	<15 M	<15 M	<15 M	
Anthracene	<16 µg/kg	TM218	<16 M	<16 M	<16 M	<16 M	<16 M	
Fluoranthene	<17 µg/kg	TM218	<17 M					
Pyrene	<15 µg/kg	TM218	<15 M	<15 M	<15 M	<15 M	<15 M	
Benz(a)anthracene	<14 µg/kg	TM218	<14 M	<14 M	<14 M	<14 M	<14 M	
Chrysene	<10 µg/kg	TM218	<10 M					
Benzo(b)fluoranthene	<15 µg/kg	TM218	<15 M	<15 M	<15 M	<15 M	<15 M	
Benzo(k)fluoranthene	<14 µg/kg	TM218	<14 M	<14 M	<14 M	<14 M	<14 M	
Benzo(a)pyrene	<15 µg/kg	TM218	<15 M	<15 M	<15 M	<15 M	<15 M	
Indeno(1,2,3-cd)pyrene	<18 µg/kg	TM218	<18 M	<18 M	<18 M	<18 M	<18 M	
Dibenzo(a,h)anthracene	<23 µg/kg	TM218	<23 M	<23 M	<23 M	<23 M	<23 M	
Benzo(g,h,i)perylene	<24 µg/kg	TM218	<24 M	<24 M	<24 M	<24 M	<24 M	
PAH, Total Detected USEPA 16	<118 µg/kg	TM218	<118	<118	<118	<118	<118	

SDG: 241108-121 Rep

Report Number: 747092 Superseded Report:

		Client Ref.: 6379	Location:	Gort Mhaolair, Athenry, G.	_
TPI	H CWG (S)			

TPH CWG (S)								
Results Legend # ISO17025 accredited.	Cust	omer Sample Ref.	ST 01	TH 01	TH 02	TH 06	TH 07	
M mCERTS accredited. aq Aqueous / settled sample.		Double (m)						
diss.filt Dissolved / filtered sample. tot.unfiltTotal / unfiltered sample.		Depth (m) Sample Type	0.40 - 0.40 Soil/Solid (S)	0.50 - 0.50 Soil/Solid (S)				
* Subcontracted - refer to subcontractor repo accreditation status.		Date Sampled Sample Time	05/11/2024	05/11/2024	05/11/2024	05/11/2024	05/11/2024	
** % recovery of the surrogate standard to che efficiency of the method. The results of indi compounds within samples aren't corrected	ividual	Date Received	08/11/2024	08/11/2024	08/11/2024	08/11/2024	08/11/2024	
recovery (F) Trigger breach confirmed		SDG Ref ab Sample No.(s)	241108-121 30638262	241108-121 30638257	241108-121 30638258	241108-121 30638259	241108-121 30638261	
1-4+§@ Sample deviation (see appendix)		AGS Reference	00000202	0000201	0000200	0000200	00000201	
Component GRO Surrogate % recovery**	LOD/Únits %	Method TM089	87.5	97.1	93.9	97.6	97.7	
Orto Surrogate 70 recovery	70	TIVIOOS	07.3	97.1	93.9	97.0	97.7	
Aliphatics >C5-C6	<10 µg/kg	TM089	<10	<10	<10	<10	<10	
(HS_1D_AL)								
Aliphatics >C6-C8	<10 µg/kg	TM089	<10	<10	<10	<10	<10	
(HS_1D_AL)								
Aliphatics >C8-C10 (HS_1D_AL)	<10 µg/kg	TM089	<10	<10	<10	<10	<10	
Aliphatics >C10-C12	<1000 µg/kg	TM414	<1000	<1000	<1000	<1000	<1000	
(EH_2D_AL_#1)	< 1000 µg/kg	1 1014 14	<1000 #	<1000 #	<1000 #	<1000 #	<1000 #	
Aliphatics >C12-C16	<1000 µg/kg	TM414	<1000	<1000	<1000	<1000	<1000	
(EH_2D_AL_#1)	1000 [2010	,	#	#	#	#	#	
Aliphatics >C16-C21	<1000 µg/kg	TM414	4390	<1000	<1000	<1000	<1000	
(EH_2D_AL_#1)			#	#	#	#	#	
Aliphatics >C21-C35 (EH_2D_AL_#1)	<1000 µg/kg	TM414	33200	<1000	<1000	<1000	<1000	
Aliphatics >C35-C44	مالام ۱۹۵۸ء	TN4444	2020	# <1000	<1000	<1000	# ~1000	
(EH_2D_AL_#1)	<1000 µg/kg	TM414	2030	<1000	<1000	<1000	<1000	
Total Aliphatics >C10-C44	<5000 µg/kg	TM414	39600	<5000	<5000	<5000	<5000	
(EH_2D_AR_#1)	-5500 μg/κξ	1 1717 17	33000	\ 0000	\0000	\ 0000	~5000	
Total Aliphatics & Aromatics >C10-C44	<10000	TM414	87900	<10000	<10000	<10000	<10000	
(EH_2D_Total_#1)	μg/kg							
Aromatics >EC5-EC7	<10 µg/kg	TM089	<10	<10	<10	<10	<10	
(HS_1D_AR)								
Aromatics >EC7-EC8 (HS_1D_AR)	<10 µg/kg	TM089	<10	<10	<10	<10	<10	
Aromatics >EC8-EC10	مال مدار مالام	TM089	<10	<10	<10	<10	<10	
(HS_1D_AR)	<10 µg/kg	1 101009	<10	<10	<10	<10	<10	
Aromatics > EC10-EC12	<1000 µg/kg	TM414	<1000	<1000	<1000	<1000	<1000	
(EH_2D_AR_#1)	Troop pg/ng	,	#	#	#	#	#	
Aromatics > EC12-EC16	<1000 µg/kg	TM414	<1000	<1000	<1000	<1000	<1000	
(EH_2D_AR_#1)			#	#	#	#	#	
Aromatics > EC16-EC21	<1000 µg/kg	TM414	5810	<1000	<1000	<1000	<1000	
(EH_2D_AR_#1) Aromatics > EC21-EC35	41000//	TN444	20200	4050	41000	4200	41000	
(EH_2D_AR_#1)	<1000 µg/kg	TM414	39200	1850	<1000	1300	<1000	
Aromatics >EC35-EC44	<1000 µg/kg	TM414	3270	<1000	<1000	<1000	<1000	
(EH_2D_AR_#1)	11000 µg/ng	1101717	0270	11000	11000	11000	11000	
Aromatics > EC40-EC44	<1000 µg/kg	TM414	<1000	<1000	<1000	<1000	<1000	
(EH_2D_AR_#1)								
Total Aromatics > EC10-EC44	<5000 µg/kg	TM414	48300	<5000	<5000	<5000	<5000	
(EH_2D_AR_#1)	40000	T14444	07000	×40000	40000	×40000	c40000	
Total Aliphatics & Aromatics >C5-C44 (EH_2D_Total_#1+HS_1D_Total)	<10000 µg/kg	TM414	87900	<10000	<10000	<10000	<10000	
GRO >C5-C6	μg/kg <20 μg/kg	TM089	<20	<20	<20	<20	<20	
(HS_1D)	_ ~ µg/\\g		-20					
GRO >C6-C7	<20 µg/kg	TM089	<20	<20	<20	<20	<20	
(HS_1D)								
GRO >C7-C8	<20 µg/kg	TM089	<20	<20	<20	<20	<20	
(HS_1D)	400 "	T14000	-00	-00	-00	-00	-00	
GRO >C8-C10 (HS_1D)	<20 µg/kg	TM089	<20	<20	<20	<20	<20	
GRO >C10-C12	<20 µg/kg	TM089	<20	<20	<20	<20	<20	
(HS_1D)	~							
Total Aliphatics >C5-C10	<50 µg/kg	TM089	<50	<50	<50	<50	<50	
(HS_1D_AL_TOTAL)								
Total Aromatics >EC5-EC10 (HS_1D_AR_TOTAL)	<50 µg/kg	TM089	<50	<50	<50	<50	<50	
(HS_ID_AR_IOTAL) GRO > C5-C10	۱۱ ۱۱	TMACCO	-00	-00	400	-00	400	
GRO >C5-C10 (HS_1D_TOTAL)	<20 µg/kg	TM089	<20	<20	<20	<20	<20	
. = = '								

SDG: 241108-121 **Client Ref.:** 6379

Superseded Report:

Report Number: 747092 Superseded Location: Gort Mhaolair, Athenry, G. Galway

	ет.: 6379			Location. V	JOIT MINAOIAIF, AT	memy, d. daiwa	<u> </u>	
VOC MS (S) Results Legend # ISO17025 accredited.	Cust	omer Sample Ref.	ST 01	TH 01	TH 02	TH 06	TH 07	
# ISUTIVE accreated. aq Aqueous / settled sample. diss.filt bissoved / filtered sample. diss.filt bissoved / filtered sample. tot.unfiltTotal / unfiltered sample. Subcontracted - refer to subcontractor rej accreditation status. " % recovery of the surrogate standard to c efficiency of the method. The results of in compounds within samples aren't correct recovery (F) Trigger breach confirmed 1.44§@ Sample deviation (see appendix)	heck the dividual ed for the	Depth (m) Sample Type Date Sampled Sample Time Date Received SDG Ref ab Sample No.(s) AGS Reference	0.40 - 0.40 Soil/Solid (S) 05/11/2024 08/11/2024 241108-121 30638262	0.50 - 0.50 Soil/Solid (S) 05/11/2024 08/11/2024 241108-121 30638257	0.50 - 0.50 Soil/Solid (S) 05/11/2024 08/11/2024 241108-121 30638258	0.50 - 0.50 Soil/Solid (\$) 05/11/2024 08/11/2024 241108-121 30638259	0.50 - 0.50 Soil/Solid (S) 05/11/2024 08/11/2024 241108-121 30638261	
Component Dibromofluoromethane**	LOD/Units %	Method TM116	101	100	100	07.7	06.3	
Dibromonuoromethane	%	TIVITIO	101	100	100	97.7	96.3	
Toluene-d8**	%	TM116	97	98.9	98	102	98.6	
4-Bromofluorobenzene**	%	TM116	75	85.4	85.3	93.7	99.3	
Methyl Tertiary Butyl Ether	<0.5 µg/kg	TM116	<0.5	<0.5	<0.5	<0.5	<0.5	
Benzene	<1 µg/kg	TM116	<1 M	<1 M	<1 M	<1 M	<1 M	
Toluene	<1 µg/kg	TM116	<1.5	<1 M	<1 M	<1 M	<1 M	
Ethylbenzene	<1 µg/kg	TM116	<1 M	<1 M	<1 M	<1 M	<3 M	
p/m-Xylene	<2 µg/kg	TM116	<2 #	<2 #	<2 #	<2 #	<5 #	
o-Xylene	<2 µg/kg	TM116	<2 M	<2 M	<2 M	<2 M	<4 M	

Hazardous

Solid Waste Analysis

Mineral Oil (mg/kg) (EH_2D_AL)

PAH Sum of 17 (mg/kg)

ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg)

pH (pH Units)

Total Organic Carbon (%)

Loss on Ignition (%) Sum of BTEX (mg/kg) Sum of 7 PCBs (mg/kg)

SDG: 241108-121 Client Ref.: 6379

Report Number: 747092 Superseded Report: Location: Gort Mhaolair, Athenry, G. Galway

CEN 10:1 SINGLE STAGE LEACHATE TEST

WAC ANALYTICAL RESULTS **REF: BS EN 12457/2 Client Reference Site Location** Gort Mhaolair, Athenry, G. Galw Mass Sample taken (kg) 0.103 **Natural Moisture Content (%)** 14.7 Mass of dry sample (kg) 0.090 **Dry Matter Content (%)** 87.2 Particle Size <4mm >95%

Case	
SDG	241108-121
Lab Sample Number(s)	30638257
Sampled Date	05-Nov-2024
Customer Sample Ref.	TH 01
Depth (m)	0.50 - 0.50

Result

0.748

2.22

<0.021

<5

<10

8.57

Landfil	Haz	Non- ardous andfill	Waste Landfill
3		5	6
-		-	10
-		-	-
1		-	-
500		-	-
100		-	-
-		>6	-
-		-	-

Eluate Analysis	C ₂ Conc ⁿ in 1	0:1 eluate (mg/l)	A2 10:1 conc	leached (mg/kg)		for compliance EN 12457-3 at L	
	Result	Limit of Detection	Result	Limit of Detection			
Arsenic	<0.0005	<0.0005	<0.005	<0.005	0.5	2	25
Barium	0.00282	<0.0002	0.0282	<0.002	20	100	300
Cadmium	<0.00008	<0.00008	<0.0008	<0.0008	0.04	1	5
Chromium	<0.001	<0.001	<0.01	<0.01	0.5	10	70
Copper	0.00217	<0.0003	0.0217	<0.003	2	50	100
Mercury Dissolved (CVAF)	<0.00001	<0.00001	<0.0001	<0.0001	0.01	0.2	2
Molybdenum	< 0.003	< 0.003	<0.03	<0.03	0.5	10	30
Nickel	0.000445	<0.0004	0.00445	<0.004	0.4	10	40
Lead	<0.0002	<0.0002	<0.002	<0.002	0.5	10	50
Antimony	<0.001	<0.001	<0.01	<0.01	0.06	0.7	5
Selenium	<0.001	<0.001	<0.01	<0.01	0.1	0.5	7
Zinc	<0.001	<0.001	<0.01	<0.01	4	50	200
Chloride	<2	<2	<20	<20	800	15000	25000
Fluoride	0.672	<0.5	6.72	<5	10	150	500
Sulphate (soluble)	<2	<2	<20	<20	1000	20000	50000
Total Dissolved Solids	72.7	<10	727	<100	4000	60000	100000
Total Monohydric Phenols (W)	<0.016	<0.016	<0.16	<0.16	1	-	-
Dissolved Organic Carbon	4.67	<3	46.7	<30	500	800	1000

Leach Test Information

Date Prepared	09-Nov-2024
pH (pH Units)	8.73
Conductivity (µS/cm)	95
Volume Leachant (Litres)	0.887

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Leachates prepared in accordance with BS EN 12457 will be carried out at room temperature (20±5°C)

Stated limits are for guidance only and ALS Laboratories (UK) Limited cannot be held responsible for any discrepancies with current legislation

19/11/2024 12:06:46

Landfill Waste Acceptance Criteria Limits

CERTIFICATE OF ANALYSIS

Case

SDG

pH (pH Units)

ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg)

SDG: 241108-121 **Client Ref**.: 6379

241108-121

9.04

Report Number: 747092 Superseded Report: Location: Gort Mhaolair, Athenry, G. Galway

CEN 10:1 SINGLE STAGE LEACHATE TEST

WAC ANALYTICAL RESULTS Client Reference Mass Sample taken (kg) 0.096 Mass of dry sample (kg) 0.090 Particle Size <4mm REF: BS EN 12457/2 Site Location Gort Mhaolair, Athenry, G. Galw Natural Moisture Content (%) 6.77 Dry Matter Content (%) 93.7

Lab Sample Number(s)	30638258
ampled Date	05-Nov-2024
Customer Sample Ref.	TH 02
Depth (m)	0.50 - 0.50
Solid Waste Analysis	Result
Total Organic Carbon (%)	2.38
Loss on Ignition (%)	<0.7
Sum of BTEX (mg/kg)	-
Sum of 7 PCBs (mg/kg)	<0.021
Mineral Oil (mg/kg) (EH_2D_AL)	<5
PAH Sum of 17 (mg/kg)	<10

Eluate Analysis	C ₂ Conc ⁿ in 10	C ₂ Conc ⁿ in 10:1 eluate (mg/l)		A ₂ 10:1 conc ⁿ leached (mg/kg)		Limit values for compliance leaching test using BS EN 12457-3 at L/S 10 l/kg		
	Result	Limit of Detection	Result	Limit of Detection				
Arsenic	<0.0005	<0.0005	<0.005	<0.005	0.5	2	25	
Barium	0.00156	<0.0002	0.0156	<0.002	20	100	300	
Cadmium	<0.00008	<0.00008	<0.0008	<0.0008	0.04	1	5	
Chromium	<0.001	<0.001	<0.01	<0.01	0.5	10	70	
Copper	0.00074	<0.0003	0.0074	<0.003	2	50	100	
Mercury Dissolved (CVAF)	<0.00001	<0.00001	<0.0001	<0.0001	0.01	0.2	2	
Molybdenum	<0.003	<0.003	<0.03	<0.03	0.5	10	30	
Nickel	<0.0004	<0.0004	<0.004	<0.004	0.4	10	40	
Lead	<0.0002	<0.0002	<0.002	<0.002	0.5	10	50	
Antimony	<0.001	<0.001	<0.01	<0.01	0.06	0.7	5	
Selenium	<0.001	<0.001	<0.01	<0.01	0.1	0.5	7	
Zinc	0.00334	<0.001	0.0334	<0.01	4	50	200	
Chloride	<2	<2	<20	<20	800	15000	25000	
Fluoride	<0.5	<0.5	<5	<5	10	150	500	
Sulphate (soluble)	<2	<2	<20	<20	1000	20000	50000	
Total Dissolved Solids	35.4	<10	354	<100	4000	60000	100000	
Total Monohydric Phenols (W)	<0.016	<0.016	<0.16	<0.16	1	-	-	
Dissolved Organic Carbon	<3	<3	<30	<30	500	800	1000	
-								

Leach Test Information

Date Prepared	09-Nov-2024
pH (pH Units)	9.56
Conductivity (µS/cm)	46
Volume Leachant (Litres)	0.894

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Leachates prepared in accordance with BS EN 12457 will be carried out at room temperature (20±5°C)

Stated limits are for guidance only and ALS Laboratories (UK) Limited cannot be held responsible for any discrepancies with current legislation

19/11/2024 12:06:46

1000

800

SDG: 241108-121 Client Ref.: 6379 Report Number: 747092 Superseded Report: Location: Gort Mhaolair, Athenry, G. Galway

CEN 10:1 SINGLE STAGE LEACHATE TEST

WAC ANALYTICAL RE	SULTS				ı	REF : BS E	N 12457/2
Client Reference		;	Site Location		Gort I	Mhaolair, Athe	enrv. G. Galv
Mass Sample taken (kg)	0.102			ure Content (%		,	,,
Mass of dry sample (kg)	0.090		Dry Matter Co		87.8		
Particle Size <4mm	>95%	-	Dry Matter Co	intent (76)	07.0		
Particle Size \4iiiiii	~95 70 ————————————————————————————————————						
Case						I Waste Acce	•
SDG	241108-121				(Criteria Limit	S
Lab Sample Number(s)	30638259						
Sampled Date	05-Nov-2024					Stable	
Customer Sample Ref.	TH 06				Inert Waste	Non-reactive Hazardous Waste	Hazardous
Depth (m)	0.50 - 0.50				Landfill	in Non- Hazardous	Waste Landfill
	0.50 - 0.50					Landfill	
Solid Waste Analysis	Result						
Fotal Organic Carbon (%)	0.59				3	5	6
oss on Ignition (%)	1.19				-	-	10
Sum of BTEX (mg/kg)	-				-	-	-
Sum of 7 PCBs (mg/kg)	<0.021 <5				500	-	-
Mineral Oil (mg/kg) (EH_2D_AL) PAH Sum of 17 (mg/kg)	<10				100	-	-
pH (pH Units)	8.14				-	>6	-
ANC to pH 6 (mol/kg)	-				-	-	-
ANC to pH 4 (mol/kg)	-				-	-	-
Eluate Analysis	C ₂ Conc ⁿ in 10	0:1 eluate (mg/l)	A 2 10:1 conc ⁿ	leached (mg/kg)	Limit values for compliance leaching test using BS EN 12457-3 at L/S 10 l/kg		
	Result	Limit of Detection		Limit of Detection		_	
Arsenic	0.0009	<0.0005	0.009	<0.005	0.5	2	25
Barium	0.00222	<0.0002	0.0222	<0.002	20	100	300
Cadmium	<0.00008	<0.00008	<0.0008	<0.0008	0.04	1	5
Chromium	<0.001	<0.001	<0.01	<0.01	0.5	10	70
Copper	0.00258	<0.0003	0.0258	<0.003	2	50	100
Mercury Dissolved (CVAF)	<0.00001	<0.00001	<0.0001	<0.0001	0.01	0.2	2
Molybdenum	<0.003	<0.003	<0.03	<0.03	0.5	10	30
Nickel	0.000464	<0.0004	0.00464	<0.004	0.4	10	40
Lead	<0.0002	<0.0002	<0.002	<0.002		0.7	50 5
Antimony	<0.001	<0.001	<0.01	<0.01	0.06		7
Selenium Zinc	<0.001 <0.001	<0.001 <0.001	<0.01 <0.01	<0.01 <0.01	0.1	0.5 50	200
Chloride	<0.001	<0.001	<20	<20	800	15000	25000
Fluoride	<0.5	<0.5	<5	<5	10	150	500
Sulphate (soluble)	14.5	<2	145	<20	1000	20000	50000
Total Dissolved Solids	89.5	<10	895	<100	4000	60000	100000
Total Monohydric Phenols (W)	<0.016	<0.016	<0.16	<0.16	1	-	-
Total Monoriyano i Honois (VV)	30.010	70.010	70.10	٠٥.١٥		-	-

Leach Test Information

Dissolved Organic Carbon

Date Prepared	09-Nov-2024
pH (pH Units)	8.79
Conductivity (µS/cm)	117
Volume Leachant (Litres)	0.888

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Leachates prepared in accordance with BS EN 12457 will be carried out at room temperature (20±5°C)

<3

Stated limits are for guidance only and ALS Laboratories (UK) Limited cannot be held responsible for any discrepancies with current legislation

<3

19/11/2024 12:06:46

<30

<30

500

Criteria Limits

CERTIFICATE OF ANALYSIS

SDG

ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg)

SDG: 241108-121 Client Ref.: 6379

241108-121

Report Number: 747092 Superseded Report: Location: Gort Mhaolair, Athenry, G. Galway

CEN 10:1 SINGLE STAGE LEACHATE TEST

WAC ANALYTICAL RE	SULTS		REF: BS EN 12457/2
Client Reference		Site Location	Gort Mhaolair, Athenry, G. Galw
Mass Sample taken (kg)	0.099	Natural Moisture Content (%)	9.99
Mass of dry sample (kg)	0.090	Dry Matter Content (%)	90.9
Particle Size <4mm	>95%		
Case			Landfill Waste Acceptance

ımber(s)	9r(s) 30638261 05-Nov-2024			Stable Non-reactive	
le Ref.	TH 07		Inert Waste Landfill	Hazardous Waste	Hazaro Waste L
Depth (m)	0.50 - 0.50		Landini	in Non- Hazardous Landfill	110
	Result				
	0.209		3	5	
0.885			-	-	1
_			-	-	-
<0.021			1	-	-
<5			500	-	-
<10			100	-	-
	8.73		_	>6	-

Eluate Analysis	C ₂ Conc ⁿ in 1	C ₂ Conc ⁿ in 10:1 eluate (mg/l)		A ₂ 10:1 conc ⁿ leached (mg/kg)		Limit values for compliance leaching test using BS EN 12457-3 at L/S 10 l/kg		
	Result	Limit of Detection	Result	Limit of Detection				
Arsenic	<0.0005	<0.0005	<0.005	<0.005	0.5	2	25	
Barium	0.00145	<0.0002	0.0145	<0.002	20	100	300	
Cadmium	<0.00008	<0.00008	<0.0008	<0.0008	0.04	1	5	
Chromium	<0.001	<0.001	<0.01	<0.01	0.5	10	70	
Copper	0.00222	<0.0003	0.0222	<0.003	2	50	100	
Mercury Dissolved (CVAF)	<0.00001	<0.00001	<0.0001	<0.0001	0.01	0.2	2	
Molybdenum	< 0.003	< 0.003	<0.03	<0.03	0.5	10	30	
Nickel	0.000732	<0.0004	0.00732	<0.004	0.4	10	40	
Lead	0.000233	<0.0002	0.00233	<0.002	0.5	10	50	
Antimony	<0.001	<0.001	<0.01	<0.01	0.06	0.7	5	
Selenium	<0.001	<0.001	<0.01	<0.01	0.1	0.5	7	
Zinc	0.00469	<0.001	0.0469	<0.01	4	50	200	
Chloride	<2	<2	<20	<20	800	15000	25000	
Fluoride	<0.5	<0.5	<5	<5	10	150	500	
Sulphate (soluble)	<2	<2	<20	<20	1000	20000	50000	
Total Dissolved Solids	48.9	<10	489	<100	4000	60000	100000	
Total Monohydric Phenols (W)	<0.016	<0.016	<0.16	<0.16	1	-	-	
Dissolved Organic Carbon	4.26	<3	42.6	<30	500	800	1000	

Leach Test Information

Date Prepared	09-Nov-2024
pH (pH Units)	9.19
Conductivity (µS/cm)	64
Volume Leachant (Litres)	0.891

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Leachates prepared in accordance with BS EN 12457 will be carried out at room temperature (20±5°C)

Stated limits are for guidance only and ALS Laboratories (UK) Limited cannot be held responsible for any discrepancies with current legislation

19/11/2024 12:06:46

SDG: 241108-121 Client Ref.: 6379

Report Number: 747092 Superseded Report: Location: Gort Mhaolair, Athenry, G. Galway

WAC ANALYTICAL RES	SULTS					REF : BS E	N 12457/2
Client Reference			Site Location		Gort	Mhaolair, Athe	enry G Galv
Mass Sample taken (kg)	0.152			ure Content (%		aoiaii, / taic	, J, O. Can
. , ,	0.090			•	58.8		
Mass of dry sample (kg)			Dry Matter Co	ntent (%)	50.0		
Particle Size <4mm	>95%						
Case						II Waste Acce	
SDG	241108-121					Criteria Limit	S
Lab Sample Number(s)	30638262						
Sampled Date	05-Nov-2024					Stable	
Customer Sample Ref.	ST 01				Inert Waste	Non-reactive Hazardous Waste	Hazardous
Depth (m)	0.40 - 0.40				Landfill	in Non- Hazardous	Waste Landfill
Solid Waste Analysis	Result					Landfill	
Total Organic Carbon (%)	1.93				3	5	6
Loss on Ignition (%)	5.14				-	-	10
Sum of BTEX (mg/kg)	-				-	-	-
Sum of 7 PCBs (mg/kg)	<0.021				1	-	-
Mineral Oil (mg/kg) (EH_2D_AL) PAH Sum of 17 (mg/kg)	35 <10				500 100		-
pH (pH Units)	6.47				-	>6	-
ANC to pH 6 (mol/kg)	-				-	-	-
ANC to pH 4 (mol/kg)	-				-	-	-
Eluate Analysis	C ₂ Conc ⁿ in 1	0:1 eluate (mg/l)	A 2 10:1 conc ⁿ	leached (mg/kg)	Limit values for compliance leaching test using BS EN 12457-3 at L/S 10 l/kg		
	Result	Limit of Detection		Limit of Detection			
Arsenic	0.00322	<0.0005	0.0322	<0.005	0.5	2	25
Barium	0.0118	<0.0002	0.118	<0.002	20	100	300
Cadmium	<0.00008	<0.00008	<0.0008	<0.0008	0.04	1	5
Chromium	<0.001	<0.001	<0.01	<0.01	0.5	10	70
Copper	0.00464	<0.0003	0.0464	<0.003	2	50	100
Mercury Dissolved (CVAF)	<0.00001	<0.00001	<0.0001	<0.0001	0.01	0.2	2
Molybdenum	0.00664	<0.003	0.0664	<0.03	0.5	10	30
Nickel	0.00544	<0.0004	0.0544	<0.004	0.4	10	40
Lead	0.000677	<0.0002	0.00677	<0.002		10	50
Antimony Selenium	0.0016 <0.001	<0.001 <0.001	0.016 <0.01	<0.01 <0.01	0.06	0.7 0.5	5 7
Zinc	0.0455	<0.001	0.455	<0.01	4	50	200
Chloride	2.3	<2	23	<20	800	15000	25000
Fluoride	<0.5	<0.5	<5	<5	10	150	500
Sulphate (soluble)	210	<2	2100	<20	1000	20000	50000
Total Dissolved Solids	351	<10	3510	<100	4000	60000	100000
Total Monohydric Phenols (W)	<0.016	<0.016	<0.16	<0.16	1	-	-
Dissolved Organic Carbon	11.4	<3	114	<30	500	800	1000
2.sss.rea e.game ea.zs.r							

Leach Test Information

Date Prepared	09-Nov-2024
pH (pH Units)	6.01
Conductivity (µS/cm)	458
Volume Leachant (Litres)	0.837

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable

Leachates prepared in accordance with BS EN 12457 will be carried out at room temperature (20±5°C)

Stated limits are for guidance only and ALS Laboratories (UK) Limited cannot be held responsible for any discrepancies with current legislation

19/11/2024 12:06:46

ALS

CERTIFICATE OF ANALYSIS

SDG: 241108-121 Report Number: 747092 Superseded Report: Client Ref.: 6379 Location: Gort Mhaolair, Athenry, G. Galway

Table of Results - Appendix

Method No	Description Description
TM104	Determination of Fluoride using the Kone Analyser
TM183	Determination of Trace Level Mercury in Waters and Leachates by PSA Cold Vapour Atomic Fluorescence Spectrometry
TM184	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers
TM414	Determination of Speciated Extractable Petroleum Hydrocarbons in Soils by GCxGC-FID
TM152	Analysis of Aqueous Samples by ICP-MS
TM168	Determination of WHO12 and EC7 Polychlorinated Biphenyl Congeners by GC-MS in Soils
TM218	The determination of PAH in soil samples by GC-MS
TM256	Determination of pH, EC, TDS and Alkalinity in Aqueous samples
TM415	Determination of Extractable Petroleum Hydrocarbons in Soils by GCxGC-FID
TM089	Determination of Gasoline Range Hydrocarbons (GRO) by Headspace GC-FID (C4-C12)
TM151	Determination of Hexavalent Chromium using Kone analyser
TM181	Determination of Routine Metals in Soil by iCap 6500 Duo ICP-OES
PM024	Soil preparation including homogenisation, moisture, screens of soils for Asbestos Containing Material
PM115	Leaching Procedure for CEN One Stage Leach Test 2:1 & 10:1 1 Step
TM018	Determination of Loss on Ignition
TM090	Determination of Total Organic Carbon/Total Inorganic Carbon in Water and Waste Water
TM116	Determination of Volatile Organic Compounds by Headspace / GC-MS
TM132	ELTRA CS800 Operators Guide
TM133	Determination of pH in Soil and Water using the GLpH pH Meter
TM259	Determination of Phenols in Waters and Leachates by HPLC
TM410	Determination of Coronene in soils by GCMS

NA = not applicable.

Chemical testing (unless subcontracted) performed at ALS Laboratories (UK) Limited Hawarden (Method codes TM).

Validated

CERTIFICATE OF ANALYSIS

SDG: 241108-121 **Client Ref.:** 6379

Report Number: 747092 Superseded Report: Location: Gort Mhaolair, Athenry, G. Galway

Test Completion Dates

	_	1631	Com	pietio	II Date
Lab Sample No(s)	30638262	30638257	30638258	30638259	30638261
Customer Sample Ref.	ST 01	TH 01	TH 02	TH 06	TH 07
odotomor odmpio itom					
AGS Ref.					
Depth	0.40 - 0.40	0.50 - 0.50	0.50 - 0.50	0.50 - 0.50	0.50 - 0.50
Type	Soil/Solid (S)	Soil/Solid (S)	Soil/Solid (S)	Soil/Solid (S)	Soil/Solid (S)
Anions by Kone (w)	13-Nov-2024	13-Nov-2024	13-Nov-2024	13-Nov-2024	13-Nov-2024
CEN 10:1 Leachate (1 Stage)	11-Nov-2024	11-Nov-2024	11-Nov-2024	11-Nov-2024	11-Nov-2024
CEN Readings	14-Nov-2024	14-Nov-2024	14-Nov-2024	14-Nov-2024	14-Nov-2024
Chromium III	14-Nov-2024	14-Nov-2024	15-Nov-2024	14-Nov-2024	14-Nov-2024
	13-Nov-2024	13-Nov-2024	13-Nov-2024	13-Nov-2024	13-Nov-2024
Coronene Dissolved Metals by ICP-MS			13-Nov-2024 14-Nov-2024	13-Nov-2024 14-Nov-2024	
,	14-Nov-2024	14-Nov-2024			14-Nov-2024
Dissolved Organic/Inorganic Carbon	13-Nov-2024	13-Nov-2024	13-Nov-2024	13-Nov-2024	13-Nov-2024
EPH by GCxGC-FID	15-Nov-2024	14-Nov-2024	15-Nov-2024	14-Nov-2024	15-Nov-2024
EPH CWG GC (S)	15-Nov-2024	15-Nov-2024	13-Nov-2024	15-Nov-2024	15-Nov-2024
Fluoride	13-Nov-2024	13-Nov-2024	13-Nov-2024	13-Nov-2024	13-Nov-2024
GRO by GC-FID (S)	12-Nov-2024	13-Nov-2024	13-Nov-2024	13-Nov-2024	13-Nov-2024
Hexavalent Chromium (s)	14-Nov-2024	14-Nov-2024	15-Nov-2024	14-Nov-2024	14-Nov-2024
Loss on Ignition in soils	13-Nov-2024	13-Nov-2024	13-Nov-2024	13-Nov-2024	13-Nov-2024
Mercury Dissolved	14-Nov-2024	15-Nov-2024	13-Nov-2024	13-Nov-2024	13-Nov-2024
Metals in solid samples by OES	14-Nov-2024	14-Nov-2024	14-Nov-2024	14-Nov-2024	14-Nov-2024
Moisture at 105C	09-Nov-2024	09-Nov-2024	09-Nov-2024	09-Nov-2024	09-Nov-2024
PAH 16 & 17 Calc	18-Nov-2024	18-Nov-2024	18-Nov-2024	18-Nov-2024	18-Nov-2024
PAH by GCMS	18-Nov-2024	18-Nov-2024	18-Nov-2024	18-Nov-2024	18-Nov-2024
PCBs by GCMS	19-Nov-2024	19-Nov-2024	19-Nov-2024	19-Nov-2024	19-Nov-2024
pH	13-Nov-2024	13-Nov-2024	13-Nov-2024	13-Nov-2024	13-Nov-2024
pH Value of Filtered Water	14-Nov-2024	14-Nov-2024	14-Nov-2024	14-Nov-2024	14-Nov-2024
Phenols by HPLC (W)	14-Nov-2024	14-Nov-2024	13-Nov-2024	13-Nov-2024	13-Nov-2024
Sample description	09-Nov-2024	09-Nov-2024	09-Nov-2024	09-Nov-2024	09-Nov-2024
Total Organic Carbon	13-Nov-2024	13-Nov-2024	13-Nov-2024	13-Nov-2024	13-Nov-2024
TPH CWG GC (S)	15-Nov-2024	15-Nov-2024	13-Nov-2024	15-Nov-2024	15-Nov-2024
VOC MS (S)	13-Nov-2024	12-Nov-2024	12-Nov-2024	12-Nov-2024	14-Nov-2024
* * * *-/	7				

SDG: 241108-121 Report Number: 747092 Superseded Report: Location: Gort Mhaolair, Athenry, G. Galway

Appendix General

1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.

- 2. If sufficient sample is received a sub sample will be retained free of charge for 15 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of 15 days after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALS reserve the right to charge for samples received and stored but not analysed.
- 3. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- 4. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.
- 5. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.
- 6. NDP No determination possible due to insufficient/unsuitable sample.
- 7. Results relate only to the items tested.
- 8. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content.
- 9. Surrogate recoveries Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect.
- 10. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.
- 11. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.
- 12. For dried and crushed preparations of soils volatile loss may occur e.g volatile mercury
- 13. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.
- 14. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.
- 15. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.
- 16. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.
- 17 Data retention. All records, communications and reports pertaining to the analysis are archived for seven years from the date of issue of the final report.

18. **Tentatively Identified Compounds (TICs)** are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

19. Sample Deviations

If a sample is classed as deviated then the associated results may be compromised.

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
4	Matrix interference
•	Sample holding time exceeded in laboratory
@	Sample holding time exceeded due to late arrival of instructions or samples
§	Sampled on date not provided

20. Asbestos

When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2021), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials and soils are obtained from supplied bulk materials andd soils which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2021).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining.

Asbe stos Type	Common Name				
Chrysof le	White Asbests				
Amosite	Brow nAsbests				
Cro d dolite	Blue Asbe stos				
Fibrous Act nolite	-				
Fib to us Anthop hyll ite	-				
Fibrous Tremol ite	-				

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Respirable Fibres

Respirable fibres are defined as fibres of <3 μ m diameter, longer than 5 μ m and with aspect ratios of at least 3:1 that can be inhaled into the lower regions of the lung and are generally acknowledged to be most important predictor of hazard and risk for cancers of the lung.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

Appendix 8 Waste Classification Report

Waste Classification Report

HazWasteOnline™ classifies waste as either **hazardous** or **non-hazardous** based on its chemical composition, related legislation and the rules and data defined in the current UK or EU technical guidance (Appendix C) (note that HP 9 Infectious is not assessed). It is the responsibility of the classifier named below to:

- a) understand the origin of the waste
- b) select the correct List of Waste code(s)
- c) confirm that the list of determinands, results and sampling plan are fit for purpose
- d) select and justify the chosen metal species (Appendix B)
- e) correctly apply moisture correction and other available corrections
- f) add the meta data for their user-defined substances (Appendix A)
- g) check that the classification engine is suitable with respect to the national destination of the waste (Appendix C)

To aid the reviewer, the laboratory results, assumptions and justifications managed by the classifier are highlighted in pale yellow.

1HCVL-F5W1A-XX4N

Report is invalid if pages are removed.

Job name

6379

Description/Comments

Client: Galway County Council Engineer: SDS Design Engineers

Project

Gort Mhaoilir

Site

Athenry, Co. Galway

Course

Classified by

Name: Company:

Stephen Letch Site Investigations Ltd

Date: The Grange
03 Dec 2024 10:39 GMT
Telephone: Lucan

00353 86817 9449 K78 F598

HazWasteOnline™ provides a two day, hazardous waste classification course that covers the use of the software and both basic and advanced waste classification techniques. Certification has to be renewed every 3 years.

HazWasteOnline™ Certification:

CERTIFIED Date

Hazardous Waste Classification Most recent 3 year Refresher 09 Oct 2019 04 Oct 2022

Next 3 year Refresher due by Oct 2025

Purpose of classification

2 - Material Characterisation

Address of the waste

Gort Mhaoilir, Athenry, Co. Galway

Post Code N/A

SIC for the process giving rise to the waste

43130 Test drilling and boring

Description of industry/producer giving rise to the waste

Site Investigation

Description of the specific process, sub-process and/or activity that created the waste

Soils recovered for environmental testing

Description of the waste

Natural soils

HazWasteOnline[™] Report created by Stephen Letch on 03 Dec 2024

Job summary

#	Sample name	Depth [m]	Classification Result	Hazard properties	WAC Results		- Page
#	Sample name	Deptil [III]	Classification Nesult	riazaru properties	Inert	Non Haz	- Faye
1	ST01-0.40	0.40	Non Hazardous		Fail	Pass	3
2	TP01-0.50	0.50	Non Hazardous		Pass	Pass	7
3	TP02-0.50	0.50	Non Hazardous		Pass	Pass	11
4	TP06-0.50	0.50	Non Hazardous		Pass	Pass	15
5	TP07-0.50	0.50	Non Hazardous		Pass	Pass	19

Related documents

# Name	Description
1 241108-121.hwol	ALS Hawarden .hwol file used to populate the Job
2 Rilta Suite NEW	waste stream template used to create this Job

WAC results

WAC Settings: samples in this Job constitute a single population.

WAC limits used to evaluate the samples in this Job: "Ireland"

The WAC used in this report are the WAC defined for the inert and non-hazardous classes of landfill in the Republic of Ireland. You should check the actual acceptance criteria when the disposal site is identified as they may differ from the generic WAC used in this report.

Created by: Stephen Letch Created date: 03 Dec 2024 10:39 GMT Appendices Page 23 Appendix A: Classifier defined and non EU CLP determinands Appendix B: Rationale for selection of metal species 24 25 Appendix C: Version

Page 2 of 26 1HCVL-F5W1A-XX4NN www.hazwasteonline.com

Classification of sample: ST01-0.40

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: ST01-0.40 Chapter: Sample Depth: Entry:

from contaminated sites)
htry: 17 05 04 (Soil and stones

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

17: Construction and Demolition Wastes (including excavated soil

0

Moisture content:

33%

(wet weight correction)

Hazard properties

None identified

Determinands

Moisture content: 33% Wet Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	0	TPH (C6 to C40) po	etroleum group	TPH		87.9	mg/kg		58.893	mg/kg	0.00589 %	√	
2	0	confirm TPH has N	OT arisen from di	esel or petrol		☑							
3	4	antimony { <mark>antimon</mark> 051-005-00-X	y trioxide } 215-175-0	1309-64-4		<0.6	mg/kg	1.197	<0.718	mg/kg	<0.0000718 %		<lod< td=""></lod<>
4	-		entoxide } 215-116-9	1303-28-2	-	3.29	mg/kg	1.534	3.381	mg/kg	0.000338 %	√	
5		Darrani (Darrani	sulphide }	21109-95-5		37.7	mg/kg	1.233	31.157	mg/kg	0.00312 %	✓	
6	4	-	<mark>n sulfate</mark> } 233-331-6	10124-36-4		0.382	mg/kg	1.855	0.475	mg/kg	0.0000475 %	✓	
7	_	copper { dicopper c 029-002-00-X	oxide; copper (I) o 215-270-7	xide } 1317-39-1		72.9	mg/kg	1.126	54.992	mg/kg	0.0055 %	✓	
8		lead { lead compospecified elsewhere			1	17.4	mg/kg		11.658	mg/kg	0.00117 %	√	
9	4	mercury { mercury	dichloride }	7487-94-7		<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
10		molybdenum { moly 042-001-00-9	<mark>/bdenum(VI) oxid</mark> 215-204-7	e } 1313-27-5		0.616	mg/kg	1.5	0.619	mg/kg	0.0000619 %	√	
11	æ å	nickel { nickel sulfat 028-009-00-5	te } 232-104-9	7786-81-4		18.9	mg/kg	2.637	33.388	mg/kg	0.00334 %	√	
12		selenium { selenium cadmium sulphose elsewhere in this A 034-002-00-8	lenide and those s			1.41	mg/kg	1.405	1.327	mg/kg	0.000133 %	√	
13	4	zinc { <mark>zinc sulphate</mark> 030-006-00-9	} 231-793-3 [1] 231-793-3 [2]	7446-19-7 [1] 7733-02-0 [2]		98.5	mg/kg	2.469	162.961	mg/kg	0.0163 %	√	
14	ď.	chromium in chrom	ium(III) compound			15.9	mg/kg	1.462	15.57	mg/kg	0.00156 %	√	

HazWasteOnline[™] Report created by Stephen Letch on 03 Dec 2024

=	_				_				,			_	
#		Determinand				User entered data		Conv.	Compound conc.		Classification value	Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP Note			i dotoi			Valuo	MC	
15	4	chromium in chromoxide } 024-001-00-0				<0.6	mg/kg	1.923	<1.154	mg/kg	<0.000115 %		<lod< td=""></lod<>
16		naphthalene	215-607-8	1333-82-0	+	<0.009	mg/kg		<0.009	mg/kg	<0.0000009 %		<lod< td=""></lod<>
	-	601-052-00-2 acenaphthylene	202-049-5	91-20-3	\vdash							H	
17	0		205-917-1	208-96-8		<0.012	mg/kg		<0.012	mg/kg	<0.0000012 %		<lod< td=""></lod<>
18	0	acenaphthene	201-469-6	83-32-9	-	<0.008	mg/kg		<0.008	mg/kg	<0.0000008 %		<lod< td=""></lod<>
19	0	fluorene	201-695-5	86-73-7		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
20	0	phenanthrene				<0.015	mg/kg		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
21	0	anthracene		85-01-8		<0.016	mg/kg		<0.016	mg/kg	<0.0000016 %		<lod< td=""></lod<>
22	0	fluoranthene	204-371-1	120-12-7	+	<0.017	mg/kg		<0.017	mg/kg	<0.0000017 %		<lod< td=""></lod<>
			205-912-4	206-44-0	1	<0.017			~0.017		~0.0000017 70		LOD
23	0		204-927-3	129-00-0		<0.015	mg/kg		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
24		benzo[a]anthracen 601-033-00-9		56-55-3		<0.014	mg/kg		<0.014	mg/kg	<0.0000014 %		<lod< td=""></lod<>
25		chrysene 601-048-00-0	205-923-4	218-01-9	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
26		benzo[b]fluoranthe		205-99-2		<0.015	mg/kg		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
27		benzo[k]fluoranthe		207-08-9		<0.014	mg/kg		<0.014	mg/kg	<0.0000014 %		<lod< td=""></lod<>
28		benzo[a]pyrene; be		201 00 0		<0.015	mg/kg		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
29 (-	601-032-00-3 indeno[123-cd]pyre		50-32-8		<0.018			<0.018		<0.0000018 %		<lod< td=""></lod<>
		dibenz[a,h]anthrac	205-893-2 ene	193-39-5			mg/kg			mg/kg			
30		601-041-00-2	200-181-8	53-70-3		<0.023	mg/kg		<0.023	mg/kg	<0.0000023 %		<lod< td=""></lod<>
31	0	benzo[ghi]perylene	205-883-8	191-24-2		<0.024	mg/kg		<0.024	mg/kg	<0.0000024 %		<lod< td=""></lod<>
32		polychlorobiphenyl: 602-039-00-4		1336-36-3		<0.021	mg/kg		<0.021	mg/kg	<0.0000021 %		<lod< td=""></lod<>
33		tert-butyl methyl etl 2-methoxy-2-methy	her; MTBE;	1634-04-4		<0.0005	mg/kg		<0.0005	mg/kg	<0.00000005 %		<lod< td=""></lod<>
34		benzene		71-43-2		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
35		toluene	203-625-9	108-88-3		<0.0015	mg/kg		<0.0015	mg/kg	<0.00000015 %		<lod< td=""></lod<>
36	0	ethylbenzene	202-849-4	100-41-4		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
37	9	coronene				<0.2	mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
38	0	рН	205-881-7	191-07-1		6.47	pН		6.47	pН	6.47 pH		
\vdash	_		1	PH	1					-		Н	
39				95-47-6 [1] 95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.004	mg/kg		<0.004	mg/kg	<0.0000004 %		<lod< td=""></lod<>
	_!		E 10-000-7 [4]	1000-20-7 [4]						Total:	0.0377 %		

Page 4 of 26 1HCVL-F5W1A-XX4NN www.hazwasteonline.com

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

₫ <LOD Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous Property to non-hazardous for cumulative determinand results below the threshold of: 1000 mg/kg (0.1%) because: HP 3 can be discounted as this is a solid waste without a free draining liquid phase.

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group (conc.: 0.00589%)

WAC results for sample: ST01-0.40

WAC Settings: samples in this Job constitute a single population.

WAC limits used to evaluate this sample: "Ireland"
The WAC used in this report are the WAC defined for the inert and non-hazardous classes of landfill in the Republic of Ireland. You should check the actual acceptance criteria when the disposal site is identified as they may differ from the generic WAC used in this report.

The sample FAILS the Inert (Inert waste landfill) criteria.

The sample PASSES the Non Haz (Non hazardous waste landfill) criteria.

WAC Determinands

	Solid Waste Analysis			Landfill Waste Acce	ptance Criteria Limits
#	Determinand		User entered data	Inert waste landfill	Non hazardous waste landfill
1	TOC (total organic carbon)	%	1.93	3	5
2	LOI (loss on ignition)	%	5.14	-	-
3	BTEX (benzene, toluene, ethylbenzene and xylenes)	mg/kg	<0.0075	6	-
4	PCBs (polychlorinated biphenyls, 7 congeners)	mg/kg	<0.021	1	-
5	Mineral oil (C10 to C40)	mg/kg	35	500	-
6	PAHs (polycyclic aromatic hydrocarbons)	mg/kg	<10	100	-
7	рН	рН	6.47	-	>6
8	ANC (acid neutralisation capacity)	mol/kg		-	-
	Eluate Analysis 10:1	,			
9	arsenic	mg/kg	0.0322	0.5	2
10	barium	mg/kg	0.118	20	100
11	cadmium	mg/kg	<0.0008	0.04	1
12	chromium	mg/kg	<0.01	0.5	10
13	copper	mg/kg	0.0464	2	50
14	mercury	mg/kg	<0.0001	0.01	0.2
15	molybdenum	mg/kg	0.0664	0.5	10
16	nickel	mg/kg	0.0544	0.4	10
17	lead	mg/kg	0.0067	0.5	10
18	antimony	mg/kg	0.016	0.06	0.7
19	selenium	mg/kg	<0.01	0.1	0.5
20	zinc	mg/kg	0.455	4	50
21	chloride	mg/kg	23	800	15,000
22	fluoride	mg/kg	<5	10	150
23	sulphate	mg/kg	2100	1,000	20,000
24	phenol index	mg/kg	<0.16	1	-
25	DOC (dissolved organic carbon)	mg/kg	114	500	800
26	TDS (total dissolved solids)	mg/kg	3510	4,000	60,000

Key

User supplied data Inert WAC criteria fail

Page 6 of 26 1HCVL-F5W1A-XX4NN www.hazwasteonline.com

17: Construction and Demolition Wastes (including excavated soil

Classification of sample: TP01-0.50

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: TP01-0.50 Chapter: Sample Depth: 0.50 m Entry:

from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05

03)

Moisture content: 13%

(wet weight correction)

Hazard properties

None identified

Determinands

Moisture content: 13% Wet Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	0	TPH (C6 to C40) p	etroleum group	TPH		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>
2	0	confirm TPH has N	IOT arisen from di	esel or petrol	-	☑							
3	4	, ,	ny trioxide } 215-175-0	1309-64-4		<0.6	mg/kg	1.197	<0.718	mg/kg	<0.0000718 %		<lod< td=""></lod<>
4	æ å		entoxide } 215-116-9	1303-28-2		2.82	mg/kg	1.534	3.763	mg/kg	0.000376 %	✓	
5	æ\$	barium { • barium	sulphide }	21109-95-5		18.5	mg/kg	1.233	19.853	mg/kg	0.00199 %	√	
6	4		m sulfate }	10124-36-4		0.687	mg/kg	1.855	1.108	mg/kg	0.000111 %	✓	
7	4	copper { dicopper o	oxide; copper (I) ox 215-270-7	(ide }		5.18	mg/kg	1.126	5.074	mg/kg	0.000507 %	✓	
8	4	lead { • lead comp specified elsewhere	pounds with the exe in this Annex (wo	ception of those orst case) }	1	5.59	mg/kg		4.863	mg/kg	0.000486 %	✓	
9	æ\$	mercury { mercury	dichloride }	7487-94-7		<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
10		molybdenum { moly	ybdenum(VI) oxide 215-204-7	} 1313-27-5		0.472	mg/kg	1.5	0.616	mg/kg	0.0000616 %	✓	
11	æ\$	nickel { nickel sulfa 028-009-00-5	te } 232-104-9	7786-81-4		10.7	mg/kg	2.637	24.545	mg/kg	0.00245 %	✓	
12	4	selenium { seleniur cadmium sulphose elsewhere in this A	lenide and those s			<1	mg/kg	1.405	<1.405	mg/kg	<0.000141 %		<lod< td=""></lod<>
13	4		231-793-3 [1] 231-793-3 [2]	7446-19-7 [1] 7733-02-0 [2]		21.1	mg/kg	2.469	45.329	mg/kg	0.00453 %	√	
14	4	chromium in chrom	nium(III) compound			6.81	mg/kg	1.462	8.659	mg/kg	0.000866 %	√	
			215-160-9	1308-38-9									

HazWasteOnline[™] Report created by Stephen Letch on 03 Dec 2024

$\overline{}$													
#			Determinand		Note	User entered dat	ta	Conv.	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP			ruotor				MC	
15	4	chromium in chromoxide }				<0.6 mg	/kg	1.923	<1.154	mg/kg	<0.000115 %		<lod< td=""></lod<>
			215-607-8	1333-82-0	-							Н	
16		naphthalene				<0.009 mg	/kg		<0.009	mg/kg	<0.0000009 %		<lod< td=""></lod<>
		-	202-049-5	91-20-3	\vdash							Н	
17	0	acenaphthylene	205-917-1	208-96-8		<0.012 mg	/kg		<0.012	mg/kg	<0.0000012 %		<lod< td=""></lod<>
18	0	acenaphthene	201-469-6	83-32-9		<0.008 mg	/kg		<0.008	mg/kg	<0.0000008 %		<lod< td=""></lod<>
19	0	fluorene	004 605 5	86-73-7		<0.01 mg	/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
20	0	phenanthrene	201-695-5	1		<0.015 mg	/ka		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
			201-581-5	85-01-8		0.0.0	,9			9/1.9	0.00000.070	Ш	
21	0	anthracene	204-371-1	120-12-7		<0.016 mg	/kg		<0.016	mg/kg	<0.0000016 %		<lod< td=""></lod<>
22	0	fluoranthene	205-912-4	206-44-0		<0.017 mg	/kg		<0.017	mg/kg	<0.0000017 %		<lod< td=""></lod<>
23	0	pyrene	204-927-3	129-00-0		<0.015 mg	/kg		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
24		benzo[a]anthracen				<0.014 mg	/kg		<0.014	mg/kg	<0.0000014 %		<lod< td=""></lod<>
25		chrysene	J.	56-55-3		<0.01 mg	/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
26		benzo[b]fluoranthe		218-01-9	\vdash	<0.015 mg	/kg		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
			205-911-9	205-99-2	-							Ш	
27		benzo[k]fluoranthe		007.00.0	-	<0.014 mg	/kg		<0.014	mg/kg	<0.0000014 %		<lod< td=""></lod<>
			205-916-6	207-08-9	\vdash							Н	
28		benzo[a]pyrene; be 601-032-00-3	200-028-5	50-32-8	-	<0.015 mg	/kg		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
		indeno[123-cd]pyre		00-02-0	\vdash								
29			205-893-2	193-39-5	-	<0.018 mg	/kg		<0.018	mg/kg	<0.0000018 %		<lod< td=""></lod<>
30		dibenz[a,h]anthrace	ene 200-181-8	53-70-3		<0.023 mg	/kg		<0.023	mg/kg	<0.0000023 %		<lod< td=""></lod<>
31	0	benzo[ghi]perylene		00.00		<0.024 mg	/I.a.		<0.024	no ar/1 car	<0.0000024 %		<lod< td=""></lod<>
31			205-883-8	191-24-2		<0.024 mg	/kg		<0.024	mg/kg	<0.0000024 %		<lod< td=""></lod<>
32	0	polychlorobiphenyl	s; PCB			<0.021 mg	/ka		<0.021	mg/kg	<0.0000021 %		<lod< td=""></lod<>
		602-039-00-4	215-648-1	1336-36-3		3.02 7 Tilg	9		-0.021	9/1/9	0.0000021 70	Ш	
33		tert-butyl methyl etl 2-methoxy-2-methy	/lpropane			<0.0005 mg	/kg		<0.0005	mg/kg	<0.00000005 %		<lod< td=""></lod<>
			216-653-1	1634-04-4	1							Ц	
34		benzene 601-020-00-8	200-753-7	71-43-2	-	<0.001 mg	/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
35		toluene	203-625-9	108-88-3		<0.001 mg	/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
36	0	ethylbenzene				<0.001 mg	/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
27	0	601-023-00-4 coronene	202-849-4	100-41-4	_		_						~! OD
37			205-881-7	191-07-1		<0.2 mg	/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
38	0	pH		PH	-	8.57 pH			8.57	pН	8.57 pH		
		o-xylene; [1] p-xyle	ne. [3] m-xvlene. [+							Н	
39		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3]		<0.004 mg	/kg		<0.004	mg/kg	<0.0000004 %		<lod< td=""></lod<>
Н			215-535-7 [4]	1330-20-7 [4]						Total:	0.0128 %	H	
										iotal.	0.0120 /0		

Page 8 of 26 1HCVL-F5W1A-XX4NN www.hazwasteonline.com

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

₫ <LOD Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

WAC results for sample: TP01-0.50

WAC Settings: samples in this Job constitute a single population.

WAC limits used to evaluate this sample: "Ireland"
The WAC used in this report are the WAC defined for the inert and non-hazardous classes of landfill in the Republic of Ireland. You should check the actual acceptance criteria when the disposal site is identified as they may differ from the generic WAC used in this report.

The sample PASSES the Inert (Inert waste landfill) criteria.

The sample PASSES the Non Haz (Non hazardous waste landfill) criteria.

WAC Determinands

	Solid Waste Analysis			Landfill Waste Acce	ptance Criteria Limits
#	Determinand		User entered data	Inert waste landfill	Non hazardous waste landfill
1	TOC (total organic carbon)	%	0.748	3	5
2	LOI (loss on ignition)	%	2.22	-	-
3	BTEX (benzene, toluene, ethylbenzene and xylenes)	mg/kg	<0.007	6	-
4	PCBs (polychlorinated biphenyls, 7 congeners)	mg/kg	<0.021	1	-
5	Mineral oil (C10 to C40)	mg/kg	<5	500	-
6	PAHs (polycyclic aromatic hydrocarbons)	mg/kg	<10	100	-
7	рН	рН	8.57	-	>6
8	ANC (acid neutralisation capacity)	mol/kg		-	-
	Eluate Analysis 10:1				
9	arsenic	mg/kg	<0.005	0.5	2
10	barium	mg/kg	0.0282	20	100
11	cadmium	mg/kg	<0.0008	0.04	1
12	chromium	mg/kg	<0.01	0.5	10
13	copper	mg/kg	0.0217	2	50
14	mercury	mg/kg	<0.0001	0.01	0.2
15	molybdenum	mg/kg	<0.03	0.5	10
16	nickel	mg/kg	0.0044	0.4	10
17	lead	mg/kg	<0.002	0.5	10
18	antimony	mg/kg	<0.01	0.06	0.7
19	selenium	mg/kg	<0.01	0.1	0.5
20	zinc	mg/kg	<0.01	4	50
21	chloride	mg/kg	<20	800	15,000
22	fluoride	mg/kg	6.72	10	150
23	sulphate	mg/kg	<20	1,000	20,000
24	phenol index	mg/kg	<0.16	1	-
25	DOC (dissolved organic carbon)	mg/kg	46.7	500	800
26	TDS (total dissolved solids)	mg/kg	727	4,000	60,000

Key

User supplied data

Page 10 of 26 1HCVL-F5W1A-XX4NN www.hazwasteonline.com

Classification of sample: TP02-0.50

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: TP02-0.50 Chapter: Sample Depth: 0.50 m Entry:

03)

Moisture content:

3.4%

(wet weight correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05

Hazard properties None identified

Determinands

Moisture content: 3.4% Wet Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	Compound conc.		MC Applied	Conc. Not Used
1	0	TPH (C6 to C40) p	etroleum group	TPH		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>
2	0	confirm TPH has N	IOT arisen from di	esel or petrol	-	✓							
3	4	antimony { <mark>antimor</mark> 051-005-00-X	ny trioxide }	1309-64-4		<0.6	mg/kg	1.197	<0.718	mg/kg	<0.0000718 %		<lod< td=""></lod<>
4	æ.	arsenic { arsenic pe 033-004-00-6	entoxide }	1303-28-2		1.13	mg/kg	1.534	1.674	mg/kg	0.000167 %	√	
5		barium { • barium	sulphide }	21109-95-5		7.36	mg/kg	1.233	8.77	mg/kg	0.000877 %	√	
6	4	cadmium {		10124-36-4		0.277	mg/kg	1.855	0.496	mg/kg	0.0000496 %	✓	
7	-	copper { dicopper o	oxide; copper (I) ox	xide }		<1.4	mg/kg	1.126	<1.576	mg/kg	<0.000158 %		<lod< td=""></lod<>
8	4	lead { • lead comp specified elsewhere			1	1.03	mg/kg		0.995	mg/kg	0.0000995 %	√	
9	4	mercury { mercury	dichloride } 231-299-8	7487-94-7		<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
10	-		215-204-7	e } 1313-27-5		0.315	mg/kg	1.5	0.456	mg/kg	0.0000456 %	√	
11	æ å	nickel { <mark>nickel sulfa</mark> 028-009-00-5	te } 232-104-9	7786-81-4		3.89	mg/kg	2.637	9.908	mg/kg	0.000991 %	✓	
12		selenium { seleniur cadmium sulphose elsewhere in this A	lenide and those s			<1	mg/kg	1.405	<1.405	mg/kg	<0.000141 %		<lod< td=""></lod<>
13	4		231-793-3 [1] 231-793-3 [2]	7446-19-7 [1] 7733-02-0 [2]		4.42	mg/kg	2.469	10.543	mg/kg	0.00105 %	√	
14	ď.	chromium in chrom	nium(III) compound	ds {		3.86	mg/kg	1.462	5.45	mg/kg	0.000545 %	√	

HazWasteOnline[™] Report created by Stephen Letch on 03 Dec 2024

Factor Compound conc. Factor Compoun	Classification value <0.000115 % <0.000009 %	Conc. No Used
EU CLP index number CAS Num	<0.000115 %	
15		<lod< td=""></lod<>
16 naphthalene	<0.0000009 %	
16	<0.0000009 %	
		<lod< td=""></lod<>
205-917-1 208-96-8 <0.012 mg/kg <0.012 mg/kg <	<0.0000012 %	<lod< td=""></lod<>
18 acenaphthene <a href="https://www.ncbe.new.new.new.new.new.new.new.new.new.ne</td><td><0.0000008 %</td><td><LOD</td></tr><tr><td>19 fluorene <a href=" https:="" td="" www.ncm.ncm.ncm.ncm.ncm.ncm.ncm.ncm.ncm.ncm<=""><td><0.000001 %</td><td><lod< td=""></lod<></td>	<0.000001 %	<lod< td=""></lod<>
- phenanthrene	<0.0000015 %	<lod< td=""></lod<>
21 anthracene <0.016 mg/kg <0.016 mg/kg <	<0.0000016 %	<lod< td=""></lod<>
204-371-1 120-12-7		
22	<0.000017 %	<lod< td=""></lod<>
23 pyrene <a block"="" href="https://www.energy.com/spreed/color="><0.015 mg/kg < <0.015 mg/kg <	<0.0000015 %	<lod< td=""></lod<>
24 benzo[a]anthracene	<0.0000014 %	<lod< td=""></lod<>
25 chrysene c0.01 mg/kg <0.01 mg/kg <	<0.000001 %	<lod< td=""></lod<>
bonzofhiftuaranthona	<0.0000015 %	<lod< td=""></lod<>
27 benzo[k]fluoranthene <0.014 mg/kg <0.014 mg/kg <	<0.0000014 %	<lod< td=""></lod<>
601-036-00-5 205-916-6 207-08-9		
28 benzo[a]pyrene; benzo[def]chrysene <0.015 mg/kg < 0.015 mg/kg <	<0.0000015 %	<lod< td=""></lod<>
29 indeno[123-cd]pyrene <0.018 mg/kg <0.018 mg/kg <	<0.0000018.0/	<lod< td=""></lod<>
29	<0.0000018 %	\LOD
30 dibenz[a,h]anthracene	<0.0000023 %	<lod< td=""></lod<>
31 benzo[ghi]perylene <0.024 mg/kg <0.024 mg/kg <	<0.0000024 %	<lod< td=""></lod<>
32 polychlorobiphenyls; PCB	<0.0000021 %	<lod< td=""></lod<>
602-039-00-4 [215-648-1 [1336-36-3] tert-butyl methyl ether; MTBE;	10 00000005 0/	
2-methoxy-2-methylpropane Co.0005 mg/kg	<0.00000005 %	<lod< td=""></lod<>
34 benzene	<0.0000001 %	<lod< td=""></lod<>
toluene	<0.0000001 %	<lod< td=""></lod<>
36 ethylbenzene < 0.001 mg/kg < 0.001 mg/kg <	<0.0000001 %	<lod< td=""></lod<>
	<0.00002 %	<lod< td=""></lod<>
205-881-7 191-07-1		-
38 9.04 pH 9.04 pH	9.04 pH	
203-530-5 [2] 100-42-5 [2] 203-576-3 [3] 108-38-3 [3]	<0.0000004 %	<lod< td=""></lod<>
[215-535-7 [4] [1330-20-7 [4] [Total:	0.00537 %	

Page 12 of 26 1HCVL-F5W1A-XX4NN www.hazwasteonline.com

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

₫ <LOD Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

WAC results for sample: TP02-0.50

WAC Settings: samples in this Job constitute a single population.

WAC limits used to evaluate this sample: "Ireland"
The WAC used in this report are the WAC defined for the inert and non-hazardous classes of landfill in the Republic of Ireland. You should check the actual acceptance criteria when the disposal site is identified as they may differ from the generic WAC used in this report.

The sample PASSES the Inert (Inert waste landfill) criteria.

The sample PASSES the Non Haz (Non hazardous waste landfill) criteria.

WAC Determinands

	Solid Waste Analysis			Landfill Waste Acce	ptance Criteria Limits
#	Determinand		User entered data	Inert waste landfill	Non hazardous waste landfill
1	TOC (total organic carbon)	%	2.38	3	5
2	LOI (loss on ignition)	%	<0.7	-	-
3	BTEX (benzene, toluene, ethylbenzene and xylenes)	mg/kg	<0.007	6	-
4	PCBs (polychlorinated biphenyls, 7 congeners)	mg/kg	<0.021	1	-
5	Mineral oil (C10 to C40)	mg/kg	<5	500	-
6	PAHs (polycyclic aromatic hydrocarbons)	mg/kg	<10	100	-
7	рН	рН	9.04	-	>6
8	ANC (acid neutralisation capacity)	mol/kg		-	-
	Eluate Analysis 10:1	,			
9	arsenic	mg/kg	<0.005	0.5	2
10	barium	mg/kg	0.0156	20	100
11	cadmium	mg/kg	<0.0008	0.04	1
12	chromium	mg/kg	<0.01	0.5	10
13	copper	mg/kg	0.0074	2	50
14	mercury	mg/kg	<0.0001	0.01	0.2
15	molybdenum	mg/kg	<0.03	0.5	10
16	nickel	mg/kg	<0.004	0.4	10
17	lead	mg/kg	<0.002	0.5	10
18	antimony	mg/kg	<0.01	0.06	0.7
19	selenium	mg/kg	<0.01	0.1	0.5
20	zinc	mg/kg	0.0334	4	50
21	chloride	mg/kg	<20	800	15,000
22	fluoride	mg/kg	<5	10	150
23	sulphate	mg/kg	<20	1,000	20,000
24	phenol index	mg/kg	<0.16	1	-
25	DOC (dissolved organic carbon)	mg/kg	<30	500	800
26	TDS (total dissolved solids)	mg/kg	354	4,000	60,000

Key

User supplied data

Page 14 of 26 1HCVL-F5W1A-XX4NN www.hazwasteonline.com

17: Construction and Demolition Wastes (including excavated soil

Classification of sample: TP06-0.50

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: TP06-0.50 Chapter: Sample Depth: 0.50 m Entry:

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

from contaminated sites)

Moisture content: 12%

(wet weight correction)

Hazard properties

None identified

Determinands

Moisture content: 12% Wet Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor Compound conc.		Classification value	MC Applied	Conc. Not Used	
1	0	TPH (C6 to C40) p	etroleum group	ТРН		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>
2	0	confirm TPH has N	OT arisen from die	esel or petrol		☑							
3	_	antimony { <mark>antimon</mark> 051-005-00-X	y trioxide } 215-175-0	1309-64-4		<0.6	mg/kg	1.197	<0.718	mg/kg	<0.0000718 %		<lod< td=""></lod<>
4	4	arsenic { <mark>arsenic pe</mark> 033-004-00-6	entoxide } 215-116-9	1303-28-2		2.88	mg/kg	1.534	3.887	mg/kg	0.000389 %	✓	
5	4		sulphide }	21109-95-5		20.7	mg/kg	1.233	22.469	mg/kg	0.00225 %	√	
6	4		<mark>m sulfate</mark> } 233-331-6	10124-36-4		0.75	mg/kg	1.855	1.224	mg/kg	0.000122 %	✓	
7	4	copper { dicopper o 029-002-00-X	oxide; copper (I) ox 215-270-7	<mark>ide</mark> } 1317-39-1		6.21	mg/kg	1.126	6.153	mg/kg	0.000615 %	✓	
8	4	lead { lead compospecified elsewhere 082-001-00-6			1	4.61	mg/kg		4.057	mg/kg	0.000406 %	✓	
9	4	mercury { mercury 080-010-00-X	dichloride }	7487-94-7		<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
10	4		y <mark>bdenum(VI) oxide</mark> 215-204-7	} 1313-27-5		0.596	mg/kg	1.5	0.787	mg/kg	0.0000787 %	✓	
11	4		te } 232-104-9	7786-81-4		12.3	mg/kg	2.637	28.539	mg/kg	0.00285 %	✓	
12	æ \$	selenium { seleniur cadmium sulphose elsewhere in this A 034-002-00-8	lenide and those s			<1	mg/kg	1.405	<1.405	mg/kg	<0.000141 %		<lod< td=""></lod<>
13	-	030-006-00-9	231-793-3 [1] 231-793-3 [2]	7446-19-7 [1] 7733-02-0 [2]		22.7	mg/kg	2.469	49.327	mg/kg	0.00493 %	✓	
14	4	chromium in chrom chromium(III) oxide		s {		7.2	mg/kg	1.462	9.26	mg/kg	0.000926 %	✓	

HazWasteOnline[™] Report created by Stephen Letch on 03 Dec 2024

	_				$\overline{}$								
#			Determinand		Note	User entered da	ata	Conv. Factor	Compound	conc.	Classification value	Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP							MC	
15	4	chromium in chromoxide }				<0.6 mg	g/kg	1.923	<1.154	mg/kg	<0.000115 %		<lod< td=""></lod<>
\vdash	_		215-607-8	1333-82-0	\vdash						<u> </u>	Н	
16		naphthalene 601-052-00-2	202-049-5	91-20-3		<0.009 mg	g/kg		<0.009	mg/kg	<0.0000009 %		<lod< td=""></lod<>
17	0	acenaphthylene	205-917-1	208-96-8		<0.012 mg	g/kg		<0.012	mg/kg	<0.0000012 %		<lod< td=""></lod<>
18	0	acenaphthene	201-469-6	83-32-9		<0.008 mg	g/kg		<0.008	mg/kg	<0.0000008 %		<lod< td=""></lod<>
19	0	fluorene				<0.01 mg	g/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
20	0	phenanthrene	201-695-5	86-73-7		<0.015 mg	a/ka		<0.015	malka	<0.0000015 %		<lod< td=""></lod<>
20			201-581-5	85-01-8		~0.015 IIIQ	g/kg			mg/kg			\LUD
21	0	anthracene	204-371-1	120-12-7		<0.016 mg	g/kg		<0.016	mg/kg	<0.0000016 %		<lod< td=""></lod<>
22	0	fluoranthene	205-912-4	206-44-0		<0.017 mg	g/kg		<0.017	mg/kg	<0.0000017 %		<lod< td=""></lod<>
23	0	pyrene	204-927-3	129-00-0		<0.015 mg	g/kg		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
24		benzo[a]anthracen	e	56-55-3		<0.014 mg	g/kg		<0.014	mg/kg	<0.0000014 %		<lod< td=""></lod<>
25		chrysene	205-923-4	218-01-9		<0.01 mg	g/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
26		benzo[b]fluoranthe	ne	205-99-2		<0.015 mg	g/kg		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
27		benzo[k]fluoranthe	ne			<0.014 mg	g/kg		<0.014	mg/kg	<0.0000014 %		<lod< td=""></lod<>
\vdash	_		205-916-6	207-08-9	\vdash							Н	
28		benzo[a]pyrene; be		50-32-8		<0.015 mg	g/kg		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
29	0	indeno[123-cd]pyre	ene 205-893-2	193-39-5		<0.018 mg	g/kg		<0.018	mg/kg	<0.0000018 %		<lod< td=""></lod<>
30		dibenz[a,h]anthrac	1	53-70-3		<0.023 mg	g/kg		<0.023	mg/kg	<0.0000023 %		<lod< td=""></lod<>
31	0	benzo[ghi]perylene		00 10 0		<0.024 mg	g/kg		<0.024	mg/kg	<0.0000024 %		<lod< td=""></lod<>
Ŭ.			205-883-8	191-24-2		-0.021 1115	9/119			mg/ng			-205
32		polychlorobiphenyl		1336 36 3		<0.021 mg	g/kg		<0.021	mg/kg	<0.0000021 %		<lod< td=""></lod<>
33		602-039-00-4 tert-butyl methyl et 2-methoxy-2-methy		1336-36-3		<0.0005 mg	g/kg		<0.0005	mg/kg	<0.00000005 %		<lod< td=""></lod<>
			216-653-1	1634-04-4									
34		benzene 601-020-00-8	200-753-7	71-43-2		<0.001 mg	g/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
35		toluene 601-021-00-3	203-625-9	108-88-3		<0.001 mg	g/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
36	0	ethylbenzene 601-023-00-4	202-849-4	100-41-4		<0.001 mg	g/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
37	0	coronene	205-881-7	191-07-1		<0.2 mg	g/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
38	0	рН	<u> </u>	ı		8.14 pH	1		8.14	рН	8.14 pH		
39		o-xylene; [1] p-xyle 601-022-00-9	ne; [2] m-xylene; [3 202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	PH 3] xylene [4] 95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.004 mg	g/kg		<0.004	mg/kg	<0.0000004 %		<lod< td=""></lod<>
			- : 0 000 / [·]	[::::::::::::::::::::::::::::::::::::::						Total:	0.014 %		

Page 16 of 26 1HCVL-F5W1A-XX4NN www.hazwasteonline.com

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

Speciated Determinand Selow limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

WAC results for sample: TP06-0.50

WAC Settings: samples in this Job constitute a single population.

WAC limits used to evaluate this sample: "Ireland"
The WAC used in this report are the WAC defined for the inert and non-hazardous classes of landfill in the Republic of Ireland. You should check the actual acceptance criteria when the disposal site is identified as they may differ from the generic WAC used in this report.

The sample PASSES the Inert (Inert waste landfill) criteria.

The sample PASSES the Non Haz (Non hazardous waste landfill) criteria.

WAC Determinands

	Solid Waste Analysis			Landfill Waste Acce	ptance Criteria Limits
#	Determinand		User entered data	Inert waste landfill	Non hazardous waste landfill
1	TOC (total organic carbon)	%	0.59	3	5
2	LOI (loss on ignition)	%	1.19	-	-
3	BTEX (benzene, toluene, ethylbenzene and xylenes)	mg/kg	<0.007	6	-
4	PCBs (polychlorinated biphenyls, 7 congeners)	mg/kg	<0.021	1	-
5	Mineral oil (C10 to C40)	mg/kg	<5	500	-
6	PAHs (polycyclic aromatic hydrocarbons)	mg/kg	<10	100	-
7	pH	рН	8.14	-	>6
8	ANC (acid neutralisation capacity)	mol/kg		-	-
	Eluate Analysis 10:1	,			
9	arsenic	mg/kg	0.009	0.5	2
10	barium	mg/kg	0.0222	20	100
11	cadmium	mg/kg	<0.0008	0.04	1
12	chromium	mg/kg	<0.01	0.5	10
13	copper	mg/kg	0.0258	2	50
14	mercury	mg/kg	<0.0001	0.01	0.2
15	molybdenum	mg/kg	<0.03	0.5	10
16	nickel	mg/kg	0.0046	0.4	10
17	lead	mg/kg	<0.002	0.5	10
18	antimony	mg/kg	<0.01	0.06	0.7
19	selenium	mg/kg	<0.01	0.1	0.5
20	zinc	mg/kg	<0.01	4	50
21	chloride	mg/kg	<20	800	15,000
22	fluoride	mg/kg	<5	10	150
23	sulphate	mg/kg	145	1,000	20,000
24	phenol index	mg/kg	<0.16	1	-
25	DOC (dissolved organic carbon)	mg/kg	<30	500	800
26	TDS (total dissolved solids)	mg/kg	895	4,000	60,000

Key

User supplied data

Page 18 of 26 1HCVL-F5W1A-XX4NN www.hazwasteonline.com

Classification of sample: TP07-0.50

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: TP07-0.50 Chapter: Sample Depth: Union Entry:

from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

17: Construction and Demolition Wastes (including excavated soil

Moisture content:

9%

(wet weight correction)

Hazard properties

None identified

Determinands

Moisture content: 9% Wet Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ntered data		Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	0	TPH (C6 to C40) p	etroleum group	TPH		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>
2	0	confirm TPH has N	IOT arisen from di	esel or petrol		Ø							
3	_	, ,	ny trioxide } 215-175-0	1309-64-4		<0.6	mg/kg	1.197	<0.718	mg/kg	<0.0000718 %		<lod< td=""></lod<>
4	-	arsenic { <mark>arsenic po</mark> 033-004-00-6	entoxide } 215-116-9	1303-28-2		2.27	mg/kg	1.534	3.169	mg/kg	0.000317 %	✓	
5		barium { • barium	sulphide }	21109-95-5		13.7	mg/kg	1.233	15.378	mg/kg	0.00154 %	√	
6	-	cadmium { <mark>cadmiui</mark> 048-009-00-9	<mark>m sulfate</mark> } 233-331-6	10124-36-4		0.606	mg/kg	1.855	1.023	mg/kg	0.000102 %	✓	
7	_	copper { dicopper o	oxide; copper (I) ox 215-270-7	<mark>(ide</mark> } 1317-39-1		3.78	mg/kg	1.126	3.873	mg/kg	0.000387 %	✓	
8		lead { lead compospecified elsewhere	oounds with the exe in this Annex (we	cception of those orst case) }	1	3.1	mg/kg		2.821	mg/kg	0.000282 %	✓	
9	4	mercury { mercury	dichloride }	7487-94-7	-	<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
10		molybdenum { moly	ybdenum(VI) oxide 215-204-7	3 } 1313-27-5		0.347	mg/kg	1.5	0.474	mg/kg	0.0000474 %	✓	
11	-	nickel { <mark>nickel sulfa</mark> 028-009-00-5	te } 232-104-9	7786-81-4		8.2	mg/kg	2.637	19.675	mg/kg	0.00197 %	✓	
12		selenium { seleniur cadmium sulphose elsewhere in this A	lenide and those s			<1	mg/kg	1.405	<1.405	mg/kg	<0.000141 %		<lod< td=""></lod<>
13	4		231-793-3 [1] 231-793-3 [2]	7446-19-7 [1] 7733-02-0 [2]		13.5	mg/kg	2.469	30.335	mg/kg	0.00303 %	✓	
14	4	chromium in chrom	nium(III) compound			5.02	mg/kg	1.462	6.677	mg/kg	0.000668 %	√	
			215-160-9	1308-38-9									

HazWasteOnline[™] Report created by Stephen Letch on 03 Dec 2024

	Г												
#			Determinand		Note	User entered data	а	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP			1 dotor				MC	
15	æ å	chromium in chromoxide }				<0.6 mg/k	kg	1.923	<1.154	mg/kg	<0.000115 %		<lod< td=""></lod<>
			215-607-8	1333-82-0	\vdash							Н	
16		naphthalene 601-052-00-2	202-049-5	91-20-3	-	<0.009 mg/k	kg		<0.009	mg/kg	<0.0000009 %		<lod< td=""></lod<>
	0	acenaphthylene	202-049-5	p 1-20-3	+							Н	
17	9		205-917-1	208-96-8		<0.012 mg/k	kg		<0.012	mg/kg	<0.0000012 %		<lod< td=""></lod<>
18	Θ	acenaphthene	201-469-6	83-32-9		<0.008 mg/k	kg		<0.008	mg/kg	<0.0000008 %		<lod< td=""></lod<>
19	0	fluorene	201-695-5	86-73-7		<0.01 mg/k	kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
20	0	phenanthrene	J.	1		<0.015 mg/k	kg		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
21	0	anthracene	201-581-5	85-01-8		<0.016 mg/k	ka		<0.016	mg/kg	<0.0000016 %		<lod< td=""></lod<>
			204-371-1	120-12-7		40.010 Hig/F	\g		-0.010		40.0000010 70		LOD
22	0	fluoranthene	205-912-4	206-44-0	-	<0.017 mg/k	kg		<0.017	mg/kg	<0.0000017 %		<lod< td=""></lod<>
23	0	pyrene	204-927-3	129-00-0		<0.015 mg/k	kg		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
		benzo[a]anthracen		129-00-0								Н	
24		601-033-00-9	200-280-6	56-55-3		<0.014 mg/k	kg		<0.014	mg/kg	<0.0000014 %		<lod< td=""></lod<>
25		chrysene 601-048-00-0	205-923-4	218-01-9		<0.01 mg/k	kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
26		benzo[b]fluoranthe	ne 205-911-9	205-99-2		<0.015 mg/k	kg		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
27		benzo[k]fluoranthei	ne			<0.014 mg/k	kg		<0.014	mg/kg	<0.0000014 %		<lod< td=""></lod<>
			205-916-6	207-08-9	-	ŭ .						Ш	
28		benzo[a]pyrene; be 601-032-00-3		F0.00.0		<0.015 mg/k	kg		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
		indeno[123-cd]pyre	200-028-5 ene	50-32-8					<u> </u>			Н	
29	Ů		205-893-2	193-39-5	-	<0.018 mg/k	kg		<0.018	mg/kg	<0.0000018 %		<lod< td=""></lod<>
30		dibenz[a,h]anthrac	ene 200-181-8	53-70-3		<0.023 mg/k	kg		<0.023	mg/kg	<0.0000023 %		<lod< td=""></lod<>
		benzo[ghi]perylene		p3-70-3								Н	
31	Ĭ		205-883-8	191-24-2	1	<0.024 mg/k	kg		<0.024	mg/kg	<0.0000024 %		<lod< td=""></lod<>
32	0	polychlorobiphenyl	s; PCB	1		<0.021 mg/k	/ 0		<0.021	mg/kg	<0.0000021 %		<lod< td=""></lod<>
52		602-039-00-4	215-648-1	1336-36-3		40.021 Hig/F	\g		-0.021	ilig/kg	VO.0000021 70		LOD
33		tert-butyl methyl etl 2-methoxy-2-methy	/lpropane			<0.0005 mg/k	kg		<0.0005	mg/kg	<0.00000005 %		<lod< td=""></lod<>
			216-653-1	1634-04-4	_							Ц	
34		benzene 601-020-00-8	200-753-7	71-43-2	-	<0.001 mg/k	kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
35		toluene 601-021-00-3	203-625-9	108-88-3		<0.001 mg/k	kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
36	0	ethylbenzene	K00-020-9	100-00-3		<0.003 mg/k	ka		<0.003	mg/kg	<0.0000003 %		<lod< td=""></lod<>
L		-	202-849-4	100-41-4	1	g/i			3.000		70	H	
37	0	coronene	205-881-7	191-07-1		<0.2 mg/k	kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
38	0	рН		PH		8.73 pH			8.73	рН	8.73 pH		
		o-xylene; [1] p-xyle	ne: [2] m-xvlene: [+							Н	
39		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3]		<0.009 mg/k	kg		<0.009	mg/kg	<0.0000009 %		<lod< td=""></lod<>
			215-535-7 [4]	1330-20-7 [4]						Total:	0.00973 %	Н	

Page 20 of 26 1HCVL-F5W1A-XX4NN www.hazwasteonline.com

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

₫ <LOD Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

WAC results for sample: TP07-0.50

WAC Settings: samples in this Job constitute a single population.

WAC limits used to evaluate this sample: "Ireland"
The WAC used in this report are the WAC defined for the inert and non-hazardous classes of landfill in the Republic of Ireland. You should check the actual acceptance criteria when the disposal site is identified as they may differ from the generic WAC used in this report.

The sample PASSES the Inert (Inert waste landfill) criteria.

The sample PASSES the Non Haz (Non hazardous waste landfill) criteria.

WAC Determinands

	Solid Waste Analysis	Landfill Waste Acce	ptance Criteria Limits		
#	Determinand		User entered data	Inert waste landfill	Non hazardous waste landfill
1	TOC (total organic carbon)	%	0.209	3	5
2	LOI (loss on ignition)	%	0.885	-	-
3	BTEX (benzene, toluene, ethylbenzene and xylenes)	mg/kg	<0.014	6	-
4	PCBs (polychlorinated biphenyls, 7 congeners)	mg/kg	<0.021	1	-
5	Mineral oil (C10 to C40)	mg/kg	<5	500	-
6	PAHs (polycyclic aromatic hydrocarbons)	mg/kg	<10	100	-
7	рН	рН	8.73	-	>6
8	ANC (acid neutralisation capacity)	mol/kg		-	-
	Eluate Analysis 10:1				
9	arsenic	mg/kg	<0.005	0.5	2
10	barium	mg/kg	0.0145	20	100
11	cadmium	mg/kg	<0.0008	0.04	1
12	chromium	mg/kg	<0.01	0.5	10
13	copper	mg/kg	0.0222	2	50
14	mercury	mg/kg	<0.0001	0.01	0.2
15	molybdenum	mg/kg	<0.03	0.5	10
16	nickel	mg/kg	0.0073	0.4	10
17	lead	mg/kg	0.0023	0.5	10
18	antimony	mg/kg	<0.01	0.06	0.7
19	selenium	mg/kg	<0.01	0.1	0.5
20	zinc	mg/kg	0.0469	4	50
21	chloride	mg/kg	<20	800	15,000
22	fluoride	mg/kg	<5	10	150
23	sulphate	mg/kg	<20	1,000	20,000
24	phenol index	mg/kg	<0.16	1	-
25	DOC (dissolved organic carbon)	mg/kg	42.6	500	800
26	TDS (total dissolved solids)	mg/kg	489	4,000	60,000

Key

User supplied data

Page 22 of 26 1HCVL-F5W1A-XX4NN www.hazwasteonline.com

Appendix A: Classifier defined and non EU CLP determinands

• TPH (C6 to C40) petroleum group (CAS Number: TPH)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013

Data source: WM3 1st Edition 2015 Data source date: 25 May 2015

Hazard Statements: Flam. Liq. 3; H226 , Asp. Tox. 1; H304 , STOT RE 2; H373 , Muta. 1B; H340 , Carc. 1B; H350 , Repr. 2; H361d , Aquatic Chronic 2;

H411

confirm TPH has NOT arisen from diesel or petrol

Description/Comments: Chapter 3, section 4b requires a positive confirmation for benzo[a]pyrene to be used as a marker in evaluating Carc. 1B; H350

(HP 7) and Muta. 1B; H340 (HP 11) Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: None.

barium sulphide (EC Number: 244-214-4, CAS Number: 21109-95-5)

EU CLP index number: 016-002-00-X

Description/Comments:

Additional Hazard Statement(s): EUH031 >= 0.8 % Reason for additional Hazards Statement(s):

14 Dec 2015 - EUH031 >= 0.8 % hazard statement sourced from: WM3, Table C12.2

lead compounds with the exception of those specified elsewhere in this Annex (worst case)

EU CLP index number: 082-001-00-6

Description/Comments: Worst Case: IARC considers lead compounds Group 2A; Probably carcinogenic to humans; Lead REACH Consortium, following CLP protocols, considers lead compounds from smelting industries, flue dust and similar to be Carcinogenic

Additional Hazard Statement(s): Carc. 1A; H350 Reason for additional Hazards Statement(s):

03 Jun 2015 - Carc. 1A; H350 hazard statement sourced from: IARC Group 2A (Sup 7, 87) 2006; Lead REACH Consortium www.reach-lead.eu/substanceinformation.html (worst case lead compounds). Review date 29/09/2015

chromium(III) oxide (worst case) (EC Number: 215-160-9, CAS Number: 1308-38-9)

Description/Comments: Data from C&L Inventory Database

Data source: https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/33806

Data source date: 17 Jul 2015

Hazard Statements: Acute Tox. 4; H332 , Acute Tox. 4; H302 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315 , Resp. Sens. 1; H334 , Skin Sens. 1; H317 , Repr. 1B; H360FD , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Acute Tox. 4; H302 , Acute Tox. 1; H330 , Acute Tox. 1; H310 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315

acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410 , Aquatic Chronic 2;

H411

• fluorene (EC Number: 201-695-5, CAS Number: 86-73-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

Hazard Statements: Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

Hazard Statements: Acute Tox. 4; H302 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Carc. 2; H351 , Skin Sens. 1; H317 , Aquatic Acute 1; H400 , Aquatic

Chronic 1; H410, Skin Irrit. 2; H315

HazWasteOnline[™]
Report created by Stephen Letch on 03 Dec 2024

anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Eye Irrit. 2; H319, STOT SE 3; H335, Skin Irrit. 2; H315, Skin Sens. 1; H317, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

• fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21 Aug 2015

Hazard Statements: Acute Tox. 4; H302, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

pyrene (EC Number: 204-927-3, CAS Number: 129-00-0)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21 Aug 2015

Hazard Statements: Skin Irrit. 2; H315, Eye Irrit. 2; H319, STOT SE 3; H335, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

• indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015 Hazard Statements: Carc. 2; H351

• benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 23 Jul 2015

Hazard Statements: Aquatic Acute 1; H400, Aquatic Chronic 1; H410

polychlorobiphenyls; PCB (EC Number: 215-648-1, CAS Number: 1336-36-3)

EU CLP index number: 602-039-00-4

Description/Comments: Worst Case: IARC considers PCB Group 1; Carcinogenic to humans;

POP specific threshold from ATP1 (Regulation 756/2010/EU) to POPs Regulation (Regulation 850/2004/EC). Where applicable, the calculation method laid down in European standards EN 12766-1 and EN 12766-2 shall be applied.

Additional Hazard Statement(s): Carc. 1A; H350 Reason for additional Hazards Statement(s):

29 Sep 2015 - Carc. 1A; H350 hazard statement sourced from: IARC Group 1 (23, Sup 7, 100C) 2012

ethylbenzene (EC Number: 202-849-4, CAS Number: 100-41-4)

EU CLP index number: 601-023-00-4

Description/Comments:

Additional Hazard Statement(s): Carc. 2; H351 Reason for additional Hazards Statement(s):

03 Jun 2015 - Carc. 2; H351 hazard statement sourced from: IARC Group 2B (77) 2000

[®] coronene (EC Number: 205-881-7, CAS Number: 191-07-1)

Description/Comments: Data from C&L Inventory Database; no entries in Registered Substances or Pesticides Properties databases; SDS: Sigma Aldrich, 1907/2006 compliant, dated 2012 - no entries; IARC – Group 3, not carcinogenic.

Data source: http://clp-inventory.echa.europa.eu/SummaryOfClassAndLabelling.aspx?SubstanceID=17010&HarmOnly=no?fc=true&lang=en

Data source date: 16 Jun 2014 Hazard Statements: STOT SE 2; H371

pH (CAS Number: PH)

Description/Comments: Appendix C4 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: None.

Appendix B: Rationale for selection of metal species

antimony {antimony trioxide}

Worst case scenario.

arsenic {arsenic pentoxide}

Arsenic pentoxide used as most hazardous species.

Page 24 of 26 1HCVL-F5W1A-XX4NN www.hazwasteonline.com

barium {barium sulphide}

Chromium VI at limits of detection. Barium sulphide used as the next most hazardous species. No chromate present.

cadmium {cadmium sulfate}

Cadmium sulphate used as the most hazardous species.

copper {dicopper oxide; copper (I) oxide}

Reasonable case CLP species based on hazard statements/molecular weight and insolubility in water. Worse case copper sulphate is very soluble and likely to have been leached away if ever present and/or not enough soluble sulphate detected.

lead {lead compounds with the exception of those specified elsewhere in this Annex (worst case)}

Chromium VI at limits of detection. Lead compounds used as the next most hazardous species. No chromate present.

mercury {mercury dichloride}

Worst case CLP species based on hazard statements/molecular weight

molybdenum {molybdenum(VI) oxide}

Worst case CLP species based on hazard statements/molecular weight.

nickel {nickel sulfate}

Chromium VI at limits of detection. Nickel sulphate used as the next most hazardous species. No chromate present.

selenium (selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex)

Harmonised group entry used as most reasonable case. Pigment cadmium sulphoselenide not likely to be present in this soil. No evidence for the other CLP entries: sodium selenite, nickel II selenite and nickel selenide, to be present in this soil.

zinc {zinc sulphate}

Chromium VI at limits of detection. Zinc sulphate used as the next most hazardous species. No chromate present.

chromium in chromium(III) compounds {chromium(III) oxide (worst case)}

Reasonable case species based on hazard statements/molecular weight. Industrial sources include: tanning, pigment in paint, inks and glass

chromium in chromium(VI) compounds {chromium(VI) oxide}

Worst case CLP species based on hazard statements/molecular weight. Industrial sources include: production stainless steel, electroplating, wood preservation, anti-corrosion agents or coatings, pigments.

Appendix C: Version

HazWasteOnline Classification Engine: WM3 1st Edition v1.1.NI - Jan 2021
HazWasteOnline Classification Engine Version: 2024.332.6362.11667 (27 Nov 2024)
HazWasteOnline Database: 2024.331.6361.11659 (26 Nov 2024)

www.hazwasteonline.com 1HCVL-F5W1A-XX4NN Page 25 of 26

This classification utilises the following guidance and legislation:

WM3 v1.1.NI - Waste Classification - 1st Edition v1.1.NI - Jan 2021

CLP Regulation - Regulation 1272/2008/EC of 16 December 2008

1st ATP - Regulation 790/2009/EC of 10 August 2009

2nd ATP - Regulation 286/2011/EC of 10 March 2011

3rd ATP - Regulation 618/2012/EU of 10 July 2012

4th ATP - Regulation 487/2013/EU of 8 May 2013

Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013

5th ATP - Regulation 944/2013/EU of 2 October 2013

6th ATP - Regulation 605/2014/EU of 5 June 2014

WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014

Revised List of Waste 2014 - Decision 2014/955/EU of 18 December 2014

7th ATP - Regulation 2015/1221/EU of 24 July 2015

8th ATP - Regulation (EU) 2016/918 of 19 May 2016

9th ATP - Regulation (EU) 2016/1179 of 19 July 2016

10th ATP - Regulation (EU) 2017/776 of 4 May 2017

HP14 amendment - Regulation (EU) 2017/997 of 8 June 2017

13th ATP - Regulation (EU) 2018/1480 of 4 October 2018

14th ATP - Regulation (EU) 2020/217 of 4 October 2019

15th ATP - Regulation (EU) 2020/1182 of 19 May 2020

The Chemicals (Health and Safety) and Genetically Modified Organisms (Contained Use)(Amendment etc.) (EU Exit)

Regulations 2020 - UK: 2020 No. 1567 of 16th December 2020

The Waste and Environmental Permitting etc. (Legislative Functions and Amendment etc.) (EU Exit) Regulations 2020 - UK:

2020 No. 1540 of 16th December 2020

17th ATP - Regulation (EU) 2021/849 of 11 March 2021

18th ATP - Regulation (EU) 2022/692 of 16 February 2022

19th ATP - Regulation (EU) 2023/1434 of 25 April 2023

20th ATP - Regulation (EU) 2023/1435 of 2 May 2023

21st ATP - Regulation (EU) 2024/197 of 19 October 2023

22nd ATP - Regulation (EÚ) 2024/2564 of 19th June 2024

Page 26 of 26 1HCVL-F5W1A-XX4NN www.hazwasteonline.com

Appendix 9 Survey Data

Survey Data

Location	Irish Transve	erse Mercator	Elevation	Irish National Grid						
Location	Easting Northing		Elevation	Easting	Northing					
Cable Percussive Boreholes										
BH01	549565.680	728009.940	45.53	149604.026	227981.472					
BH02	549525.171	728054.603	45.64	149563.508	228026.144					
BH03	549617.943	728020.002	45.53	149656.300	227991.536					
BH04	549568.282	728052.783	46.35	149606.628	228024.324					
BH05	549516.648	728104.100	45.02	149554.983	228075.652					
BH06	549481.870	728052.619	46.08	149520.198	228024.159					
		Tria	al Pits							
TP01	549585.917	727998.146	45.23	149624.267	227969.675					
TP02	549540.830	728046.118	45.88	149579.171	228017.657					
TP03	549620.731	728008.343	45.26	149659.089	227979.875					
TP04	549577.720	728046.005	46.13	149616.069	228017.545					
TP05	549536.109	728085.166	45.67	149574.448	228056.714					
TP06	549505.510	728092.634	45.28	149543.843	228064.183					
TP07	549482.689	728064.657	46.04	149521.017	228036.200					
		Soakav	vay Tests							
INF1	549616.363	727993.351	44.44	149654.720	227964.879					
INF2	549603.389	728030.301	45.47	149641.743	228001.837					
INF3	549554.464	728062.189	46.68	149592.807	228033.732					
INF4	549505.957	728075.441	45.39	149544.290	228046.987					
INF5	549493.302	728009.237	45.28	149531.632	227980.768					
		Plate	Tests							
PLT1	549589.592	727984.839	45.12	149627.943	227956.366					
PLT2	549605.036	728005.136	45.16	149643.391	227976.667					
PLT3	549530.660	728072.878	45.83	149568.998	228044.423					
PLT4	549475.823	728020.429	44.67	149514.150	227991.963					
PLT5	549519.675	728017.080	45.44	149558.011	227988.613					
		Slit Tı	renches							
ST01 Start	549490.866	728076.583	45.82	149529.196	228048.129					
ST01 End	549498.902	728085.262	45.45	149537.233	228056.810					

APPENDIX C – MICRODRAINAGE OUTPUTS

SDS		Page 1
Structual & Civil Engineers Unit 9, N5 Business Park, Ca	Attenuation Tank Check	
Co. Mayo, Mayo, Ireland		Micro
Date 25/03/2025 12:15	Designed by AT	Drainage
File ATTENUATION TANK -25.03	Checked by CD	Drainage
Innovyze	Source Control 2020.1	

Summary of Results for 100 year Return Period (+30%)

Half Drain Time : 1624 minutes.

	Storm		Max	Max	Max	Max	Max	Max	Status
	Event		Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
15	min S	Summer	42.568	0.268	0.0	3.4	3.4	140.3	O K
30	min S	Summer	42.687	0.387	0.0	3.5	3.5	202.3	O K
60	min S	Summer	42.823	0.523	0.0	3.5	3.5	273.5	O K
120	min S	Summer	42.966	0.666	0.0	3.5	3.5	348.0	O K
180	min S	Summer	43.060	0.760	0.0	3.5	3.5	396.9	O K
240	min S	Summer	43.103	0.803	0.0	3.5	3.5	419.4	O K
360	min S	Summer	43.209	0.909	0.0	3.5	3.5	475.0	O K
480	min S	Summer	43.264	0.964	0.0	3.5	3.5	503.8	O K
600	min S	Summer	43.303	1.003	0.0	3.5	3.5	524.1	O K
720	min S	Summer	43.331	1.031	0.0	3.5	3.5	538.7	O K
960	min S	Summer	43.366	1.066	0.0	3.5	3.5	557.0	O K
1440	min S	Summer	43.389	1.089	0.0	3.5	3.5	569.0	O K
2160	min S	Summer	43.393	1.093	0.0	3.5	3.5	571.0	O K
2880	min S	Summer	43.382	1.082	0.0	3.5	3.5	565.5	O K
4320	min S	Summer	43.345	1.045	0.0	3.5	3.5	546.1	O K
5760	min S	Summer	43.298	0.998	0.0	3.5	3.5	521.6	O K
7200	min S	Summer	43.248	0.948	0.0	3.5	3.5	495.4	O K
8640	min S	Summer	43.195	0.895	0.0	3.5	3.5	467.6	ОК
10080	min S	Summer	43.139	0.839	0.0	3.5	3.5	438.3	O K
15	min V	Vinter	42.622	0.322	0.0	3.5	3.5	168.1	O K

Storm			Rain	Flooded	Discharge	Time-Peak
Event			(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	89.434	0.0	134.5	26
30	min	Summer	62.213	0.0	195.8	44
60	min	Summer	40.710	0.0	279.3	74
120	min	Summer	25.823	0.0	360.9	132
180	min	Summer	19.616	0.0	415.8	192
240	min	Summer	16.106	0.0	444.1	248
360	min	Summer	12.163	0.0	507.3	370
480	min	Summer	9.952	0.0	529.9	488
600	min	Summer	8.513	0.0	530.8	608
720	min	Summer	7.490	0.0	527.0	726
960	min	Summer	6.118	0.0	516.6	964
1440	min	Summer	4.599	0.0	497.4	1352
2160	min	Summer	3.455	0.0	895.2	1716
2880	min	Summer	2.818	0.0	964.4	2104
4320	min	Summer	2.111	0.0	934.6	2944
5760	min	Summer	1.719	0.0	1197.1	3760
7200	min	Summer	1.465	0.0	1274.9	4616
8640	min	Summer	1.285	0.0	1341.7	5456
10080	min	Summer	1.151	0.0	1399.7	6264
15	min	Winter	89.434	0.0	162.4	30

©1982-2020 Innovyze

SDS		Page 2
Structual & Civil Engineers	Attenuation Tank Check	
Unit 9, N5 Business Park, Ca		
Co. Mayo, Mayo, Ireland		Micro
Date 25/03/2025 12:15	Designed by AT	Drainage
File ATTENUATION TANK -25.03	Checked by CD	Dialilade
Innovyze	Source Control 2020.1	

Summary of Results for 100 year Return Period (+30%)

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
30	min W:	inter	42.749	0.449	0.0	3.5	3.5	234.7	ОК
60	min W	inter	42.868	0.568	0.0	3.5	3.5	296.7	O K
120	min W	inter	43.037	0.737	0.0	3.5	3.5	385.1	O K
180	min W	inter	43.161	0.861	0.0	3.5	3.5	449.8	O K
240	min W	inter	43.232	0.932	0.0	3.5	3.5	487.0	O K
360	min W	inter	43.328	1.028	0.0	3.5	3.5	537.2	O K
480	min W	inter	43.393	1.093	0.0	3.5	3.5	571.2	O K
600	min W	inter	43.440	1.140	0.0	3.5	3.5	595.8	O K
720	min W	inter	43.475	1.175	0.0	3.5	3.5	614.1	O K
960	min W	inter	43.522	1.222	0.0	3.5	3.5	638.5	O K
1440	min W	inter	43.562	1.262	0.0	3.5	3.5	659.3	O K
2160	min W	inter	43.560	1.260	0.0	3.5	3.5	658.4	O K
2880	min W	inter	43.546	1.246	0.0	3.5	3.5	651.1	O K
4320	min W	inter	43.486	1.186	0.0	3.5	3.5	619.6	O K
5760	min W	inter	43.409	1.109	0.0	3.5	3.5	579.3	O K
7200	min W	inter	43.326	1.026	0.0	3.5	3.5	535.9	O K
8640	min W	inter	43.239	0.939	0.0	3.5	3.5	490.6	O K
10080	min W	inter	43.147	0.847	0.0	3.5	3.5	442.6	O K

Storm			Rain	Flooded	Discharge	Time-Peak
Event			(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
30	min	Winter	62.213	0.0	224.8	43
60	min	Winter	40.710	0.0	302.1	72
120	min	Winter	25.823	0.0	395.6	128
180	min	Winter	19.616	0.0	464.7	188
240	min	Winter	16.106	0.0	503.9	248
360	min	Winter	12.163	0.0	537.3	364
480	min	Winter	9.952	0.0	537.7	480
600	min	Winter	8.513	0.0	533.7	596
720	min	Winter	7.490	0.0	529.2	710
960	min	Winter	6.118	0.0	521.7	938
1440	min	Winter	4.599	0.0	514.9	1378
2160	min	Winter	3.455	0.0	997.4	1800
2880	min	Winter	2.818	0.0	1041.0	2224
4320	min	Winter	2.111	0.0	973.2	3164
5760	min	Winter	1.719	0.0	1340.8	4096
7200	min	Winter	1.465	0.0	1427.7	4984
8640	min	Winter	1.285	0.0	1502.2	5888
10080	min	Winter	1.151	0.0	1566.9	6768

SDS		Page 3
Structual & Civil Engineers	Attenuation Tank Check	
Unit 9, N5 Business Park, Ca		
Co. Mayo, Mayo, Ireland		Micro
Date 25/03/2025 12:15	Designed by AT	Drainage
File ATTENUATION TANK -25.03	Checked by CD	Drainage
Innovvze	Source Control 2020.1	

Rainfall Details

	Rainfall Model		FSR	Winter	Storms	Yes
Return	Period (years)		100	Cv (Summer)	0.750
	Region	Scotland and	Ireland	Cv (1	Winter)	0.840
	M5-60 (mm)		15.900	Shortest Storm	(mins)	15
	Ratio R		0.270	Longest Storm	(mins)	10080
	Summer Storms		Yes	Climate C	hange %	+30

Pipe Network

Volume in Pipe Network (m^3) 10 Dia of Outfall Pipe (m) 0.3 Slope of Outfall Pipe (1:X) 200 Roughness of Outfall Pipe (mm) 0.150

Time Area Diagram

Total Area (ha) 0.969

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.323	4	8	0.323	8	12	0.323

SDS		Page 4
Structual & Civil Engineers	Attenuation Tank Check	
Unit 9, N5 Business Park, Ca		
Co. Mayo, Mayo, Ireland		Micro
Date 25/03/2025 12:15	Designed by AT	Drainage
File ATTENUATION TANK -25.03	Checked by CD	Dialilade
Innovyze	Source Control 2020.1	

Model Details

Storage is Online Cover Level (m) 44.380

Cellular Storage Structure

Depth (m)	Area (m²)	Inf. Area	(m²)	Depth (m)	Area (m²)	Inf. Area	(m²)
0.000	550.0		0.0	1.321	0.6		0.0
1.320	550.0		0.0	2.080	0.6		0.0

Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0085-3600-1320-3600 1.320 Design Head (m) Design Flow (1/s) 3.6 Flush-Flo™ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 85 Invert Level (m) 42.300 Minimum Outlet Pipe Diameter (mm) 100 Suggested Manhole Diameter (mm) 1200

Control	Points	Head (m)	Flow (1/s)
Design Point	(Calculated)	1.320	3.6
	Flush-Flo™	0.375	3.5
	Kick-Flo®	0.760	2.8
Mean Flow ove	r Head Range	_	3.1

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) F	low (1/s)	Depth (m) Flow	(1/s)	Depth (m) Flow	(1/s)	Depth (m)	Flow (1/s)
0 100	0.6	1 000	0 4	0.000			
0.100	2.6	1.200	3.4	3.000	5.3	7.000	7.9
0.200	3.3	1.400	3.7	3.500	5.7	7.500	8.1
0.300	3.4	1.600	3.9	4.000	6.0	8.000	8.4
0.400	3.5	1.800	4.2	4.500	6.4	8.500	8.6
0.500	3.4	2.000	4.4	5.000	6.7	9.000	8.9
0.600	3.3	2.200	4.6	5.500	7.0	9.500	9.1
0.800	2.9	2.400	4.7	6.000	7.3		
1.000	3.2	2.600	4.9	6.500	7.6		

©1982-2020 Innovyze

APPENDIX D – MET ÉIREANN RAINFALL RETURN PERIOD DATA

Met Eireann
Return Period Rainfall Depths for sliding Durations
Irish Grid: Easting: 149624, Northing: 228001,

	Interva	1					_	Years								
DURATION	6months, 1y	ear,	2,	3,	4,	5,	10,	20,	30,	50,	75 ,	100,	150,	200,	250,	500,
5 mins	2.7,	3.7,	4.2,	5.0,	5.6,	6.0,	7.4,	9.0,	10.0,	11.4,	12.7,	13.6,	15.1,	16.3,	17.3,	N/A ,
10 mins	3.7,	5.1,	5.9,	7.0,	7.8,	8.4,	10.3,	12.5,	13.9,	15.9,	17.7,	19.0,	21.1,	22.7,	24.1,	N/A,
15 mins	4.3,	6.0,	6.9,	8.3,	9.2,	9.9,	12.1,	14.7,	16.4,	18.7,	20.8,	22.4,	24.8,	26.7,	28.3,	N/A ,
30 mins	5.8,	7.9,	9.0,	10.6,	11.7,	12.5,	15.2,	18.2,	20.1,	22.8,	25.2,	27.0,	29.7,	31.9,	33.6,	N/A ,
1 hours	7.7, 1	10.3,	11.7,	13.6,	14.9,	15.9,	19.0,	22.5,	24.7,	27.8,	30.5,	32.5,	35.6,	38.0,	39.9,	N/A ,
2 hours	10.3, 1	13.5,	15.1,	17.5,	19.0,	20.2,	23.8,	27.8,	30.4,	33.9,	36.9,	39.2,	42.6,	45.3,	47.4,	N/A ,
3 hours	12.3, 1	15.8,	17.6,	20.2,	21.9,	23.2,	27.2,	31.5,	34.3,	38.0,	41.2,	43.7,	47.4,	50.2,	52.4,	N/A ,
4 hours	13.8, 1	17.7,	19.6,	22.4,	24.2,	25.6,	29.9,	34.4,	37.3,	41.3,	44.7,	47.2,	51.0,	53.9,	56.3,	N/A ,
6 hours	16.4, 2	20.7,	22.8,	25.9,	27.9,	29.4,	34.0,	39.0,	42.1,	46.3,	49.9,	52.7,	56.7,	59.8,	62.3,	N/A ,
9 hours	19.4, 2	24.2,	26.6,	30.0,	32.1,	33.8,	38.8,	44.2,	47.5,	52.0,	55.9,	58.7,	63.0,	66.2,	68.9,	N/A ,
12 hours	21.8, 2	27.1,	29.6,	33.2,	35.5,	37.3,	42.6,	48.3,	51.8,	56.5,	60.5,	63.5,	67.9,	71.3,	74.0,	N/A ,
18 hours	25.9, 3	31.7,	34.5,	38.4,	40.9,	42.8,	48.6,	54.7,	58.4,	63.4,	67.6,	70.8,	75.5,	79.0,	81.8,	N/A ,
24 hours	29.2 , 3	35.4,	38.4,	42.6,	45.3,	47.3,	53.4,	59.7,	63.6,	68.8,	73.2,	76.5,	81.3,	84.9,	87.8,	97.5,
2 days	37.9 , 4	15.2,	48.7 ,	53.5,	56.6,	58.9,	65.8,	72.9,	77.2,	82.9,	87.7,	91.3,	96.6,	100.5,	103.6,	113.9,
3 days	45.4 , 5	3.6,	57.5 ,	62.9,	66.2,	68.7 ,	76.3,	84.1,	88.8,	95.0,	100.2,	104.0,	109.7,	113.8,	117.2,	128.2,
4 days	52.2, 6	51.2,	65.4,	71.3,	74.9,	77.7,	85.8,	94.2,	99.2,	105.8,	111.4,	115.5,	121.4,	125.9,	129.4,	141.0,
6 days	64.6, 7	75.0,	79.9,	86.6,	90.7,	93.8,	103.0,	112.4,	118.0,	125.4,	131.5,	136.0,	142.6,	147.5,	151.4,	164.1,
8 days	76.1, 8	37.7,	93.1,	100.5,	105.1,	108.5,	118.7,	128.9,	135.1,	143.1,	149.8,	154.7,	161.8,	167.1,	171.3,	184.9,
10 days	86.9, 9	9.7,	105.6,	113.7,	118.7,	122.4,	133.4,	144.4,	151.0,	159.7,	166.8,	172.0,	179.7,	185.3,	189.7,	204.3,
12 days	97.4, 11	11.2,	117.6,	126.2,	131.6,	135.6,	147.3,	159.1,	166.2,	175.3,	182.9,	188.5,	196.6,	202.5,	207.2,	222.6,
16 days	117.5, 13	33.1,	140.4,	150.2,	156.2,	160.6,	173.8,	186.9,	194.8,	205.0,	213.4,	219.5,	228.4,	234.9,	240.1,	256.9,
20 days	136.8, 15	54.2,	162.2,	173.0,	179.6,	184.5,	199.0,	213.3,	221.8,	232.9,	242.0,	248.7,	258.3,	265.4,	271.0,	289.1,
25 days	160.2, 17	79.6,	188.5,	200.5,	207.8,	213.2,	229.1,	244.8,	254.2,	266.3,	276.2,	283.5,	293.9,	301.6,	307.7,	327.2,
NOTES:							•									

N/A Data not available

These values are derived from a Depth Duration Frequency (DDF) Model

For details refer to:

'Fitzgerald D. L. (2007), Estimates of Point Rainfall Frequencies, Technical Note No. 61, Met Eireann, Dublin', Available for download at www.met.ie/climate/dataproducts/Estimation-of-Point-Rainfall-Frequencies_TN61.pdf

 $M5_60 = 15.9$

 $M5_2day = 58.9$

 $r = M5_60/M5_2day$

r = 15.9/58.90 = 0.2699

r = 0.270

APPENDIX E – UISCE EIREANN PRE-CONNECTION ENQUIRY

Pre-connection enquiry form

Business developments, mixed use developments, housing developments

This form is to be filled out by applicants enquiring about the feasibility of a water and/or wastewater connection to Irish Water infrastructure. If completing this form by hand, please use BLOCK CAPITALS and black ink. Please note that this is a digital PDF form and can be filled in electronically

Please refer to the **Guide to completing the pre-connection enquiry form** on page 14 of this document when completing the form.

* Denotes mandatory/ required field. Please note, if mandatory fields are not completed the application will be returned.

*/	App	lica	nt d	etai	IS:																						
R	egis	tere	ed co	mpa	any i	nam	ne (i	f ap	plica	able	e):																
Tı	radi	ng ı	name	e (if a	appl	icab	ole):								<u> </u>												
		Ť		Ť	i.		1			<u> </u>	<u> </u>			!	<u> </u>		l	l		!	 						
		220	y reg	ictra	tion		mbe		fan	nlic	l abla	١٠.							l					l	l	<u> </u>	
	·																										
P	arer	nt co	omp	any i	egis	ter	ed c	om	pan	y na	me	(if a	appl	icat	ole):												
_	-		-		'		-	'			-							· —	_						1	-	
		-+ -			:-	+	L: ~ ~		h -	· /:£		. 1:	املما														
Ρ.	arer	nt co	omp	any i	egis	tra	tion	nuı	mbe	er (if	app	olica	ble)	:													
			ompa e not	-	_										rov	ide [·]	the	арр	lica	nt's	nan	ne:					
			•	-	_										rov	ide '	the	арр	lica	nt's	nan	ne:					
lf	you	ı are	e not	a re	_										prov	ide	the	app	lica	nt's	nan	ne:					
f *(you Con	ı are	e not	a re	_										prov	ide	the	арр	lica	nt's	nan	ne:					
f *(you Con	ı are	e not	a re	_										rov	ide ·	the	арр	lica	nt's	nan	ne:					
If *	you Con	ı are	e not	a re	_										prov	ide	the	арр	lica	nt's	nan	ne:					
If *	you Con	ı are	e not	a re	_										prov	ide	the	app	lica	nt's	nan	ne:					
t *(*	you Con Post	tact	e not	a re	_										prov	ide	the	арр	lica	nt's	nan	ne:					
If *(* *	Con	tacttal a	e not	a re	egist	erec	d co	mp	any,	/bus	sine	ss, r	blea:	se p	prov	ide	the	app	lica	nt's	nan	ne:					
If *(* *	Con	tacttal a	e not	a re	egist	erec	d co	mp	any,	/bus	sine	ss, r	blea:	se p	prov	ide ·	the	app	lica	nt's	nan	ne:					
If	Con	tacttal a	e not	a re	egist	erec	d co	mp	any,	/bus	sine	ss, r	blea:	se p	prov	ide	the	арр	lica	nt's	nan	ne:					
If	Con Post	tact tal a	e not	a re	egist	erec	d co	mp	any,	/bus	sine	ss, r	blea:	se p	prov	ide	the	арр	lica	nt's	nan	ne:					
If	you Con Post	tact tact code se pi	e not	a re	egist	erec	d co	mp	any,	/bus	sine	ss, r	blea:	se p	prov	ide	the	арр	lica	nt's	nan	ne:					

								t	gen	ı ag	; an	sing	if us	ory	ndat	m ؛	n ar	≏ctic	is s	in th	h *	wit	ked	marl	ds r		The *Cor
										$\overline{}$				•				ccic									*Cor
										\perp						\mathbb{I}							≘:	ame	ct n	nta	
																I):	able	plica	f ap	e (if	nam	ny r	пра	Com
										\Box													s:	dres	ado	sta	*Pos
										\top				Г													
	•									Ī						Ī											
																1							•	•	e:	coc	*Eiro
														er	ımbe	_ e n	nobi	r a ı	ne c	ndli	a la	her	eitl	vide	pro	ise	Plea
									T	T	T			Τ	\top	T											Lanc
									$\frac{\perp}{\perp}$	1					+	\pm					<u> </u>				<u>e</u>	bil	*Mo
			Г						<u> </u>	<u> </u>	<u> </u>		 	 	\pm	\pm			 		<u> </u>						*Em
				<u> </u>			ļ												<u> </u>							iuii.	
ondence in	sno	orre	e (tur	ı fıı	eiv <i>e</i>	rece	ld i	میرا	shr	ho (t w.l	zení	r a	nt o	lic.	anı	the	it ic	er i	neth	wh	ate	ndic	e in	ac	*Dle
ondence in	Spo	5110		· ·				.u .	ou.	3110		. ***	,	. "			чы			<i>/</i> :	uiry	enq	he e	to th	on 1	ati	rel
															gent	,									nt	lica	Арр
																					ls	etai	de	ite	S	B	tion
									r):	ıbe	um	าg n	ildir	/Bu	ame	ng	uildi	ne/E	nan	Site	ıde S	nclu	1 (ir	ess '	ddr	e a	*Site
										\top	Π	Ť		Π	\top	Ť	Т										
										\pm				$\overline{\Box}$	\pm	\pm	$\frac{1}{1}$							2	· · · · · · · · · · · · · · · · · · ·	dre	*Ad
										\pm				\perp	\pm	\pm											
									+	\pm	$\frac{\bot}{\Box}$		\vdash	\pm	\pm	\pm	$\frac{\perp}{\parallel}$		\vdash								
			_	늗	<u> </u>					十		<u></u>	\vdash	一	+	$\frac{\perp}{\top}$	$\frac{\perp}{\perp}$		_							-	
			<u> </u>		ae	irco	EI				<u></u>														.y	un	*Co
													+ \•	oin	on n			haa	ono	(nr	toc	dins	orc		- :	sh (
								7	_				c).	OIII			nnı								-ric		*Iric
								- 1		$\neg \tau$	\top		\top	\neg	_			_		\ P .				_			*Iris
											\prod_{a}	\perp	\prod	\prod_{\cdot}	(Y)	ings	orth] N						()	s (X	ing	East
362,000	nd 3	00 a	<u>1</u> 9,0	n 02	vee		_	•							(Y) [5,900	ings	orth wee	Ne be	st b	mu	ngs	asti	or E	es fo	s (X 'alu	ting e: V	East
362,000	nd 3	00 a	<u>2</u> 9,0	n 02	vee		_	•		No N(Y)					(Y)	ings	orth wee	Ne be	st b	mu	ngs	asti	or E	es fo	s (X 'alu	ting e: V	East
362,000	nd 3	00 a	<u>2</u> 9,0	n 02	vee		_	•				8	5,878	315	(Y) [5,900	ings n 0° olin	orth wee , Du	be be	st be	mu: O'Cd	ngs PO, (asti of GI	or E	es fo	s (X 'alu ordi	ting e: V	East Note Eg. c
362,000	nd 3	00 a	29,0	n 02	vee		_	•				8	5,878	315	(Y) 5,900 E(X)	ings n 0° olin	orth wee , Du	be be	st be	mu: O'Cd	ngs PO, (asti of GI	or E	es fo	s (X 'alu ordi	ting e: V	East Note Eg. c
362,000	nd 3	00 a	29,0	n 02	vee		_	•				8	5,878	315	(Y) 5,900 E(X)	ings n 0° olin	orth wee , Du	be be	st be	mu: O'Cd	ngs PO, (asti of GI	or E	es fo	s (X 'alu ordi	ting e: V	East Note Eg. c
	nd 3	00 a	29,0				_	•				8	5,878	315	(Y)	ings n 0° polin	orth wee , Du	Ne be	st be	mu: O'Cd	ngs PO, (Easti of GI whe	or E es o	es for	s (X 'aluo ordi Aut	e: V	East Note Eg. o
No	nd 3	000 a	29,0	n 02			519	34,6) 23	N(Y)		8 d:	5,878 atec	315 loc	(Y)	n 0° olin	orth wee , Du velo	Ne be be be bell St	sst be	mu: O'Cc	ngs PO, (asti	or E	es fo nate hor	s (X 'aluo prdi Aut	e: V	East Note Eg. c *Loc *Ha
									er):	nbei	um	ng n	ildir	/Bu	ame	ng I	uildi	ne/E	nan	Site				ess 1	ddro ess 2	e a dre	

2

	ш	C	D	ev	elo	p	me	n	t d	eta	ils	5																		
		ase est		tlir	ne t	he	do	m	est	ic a	nd	/or i	ndı	ıstr	y/b	usii	ness	us	e pr	opo	osec	l:								
		P	rop	ert	y ty	ре					Νι	ımbe	er of	uni	its				Pro	pert	y ty	pe				Nu	mbe	er of	uni	ts
				Hou	ise														Ар	artr	nent	S								
			I	Dup	lex													A			er o									
Inc	Jυ	str	y/b	usi	nes	s:																								
		P	roj	ert	y ty	рε	•				Νι	ımbe	er of	fun	its				Pro	pert	ty ty	ре				Nu	mbe	er of	funi	ts
			Ag	ricu	ltura	al												Br	ewe	ery /	Dist	illery	/							
	R	esta	ura	int /	Caf	é /	' Pul)										Ca	ır W	ash	/ Val	etin	g							
			(Cred	he														Da	ita C	entr	e								
			Fire	: Ну	drai	nt													Fir	re St	atio	n								
		Fc	od	Pro	cess	sin	g											Hot	el A	ccor	nmo	dati	on							
ı	nc	ustı	ial	/ Ma	anut	fac	turi	ng										Lau	ındr	y / L	aun	dret	te							
				Offi	ce													Pri	mar	y Ca	re C	entr	e							
Re	esi	dent	al /	Nur	sing (Car	e Ho	m	e											Ret	ail									
				Scho	ool														Spc	rts	Facil	ity								
	St	udei	nt A	cco	mm	oc	latic	n											W	areh	nous	e								
0	th	er (¡	olea	se :	spec	ify	y typ	e)																	No.	of L	Jnits	;		
		se p	ro									our her (nes	s us	e ar	e ir	the	Foo	od P	roc	essi	ng,	Ind	ustr	ial u	ıni

		cted occupancy in number of people, mber of office workers, number of nu eds, number of retail workers:	
10	*Approximate start date of prop	osed development:	
11	*Is the development multi-phase		Yes No No
	If 'Yes', application must include a ma	aster-plan identifying the development	phases and the current phase number.
	If 'Yes', please provide details of va phasing requirements.	riations in water demand volumes ar	nd wastewater discharge loads due to
12	*Please indicate the type of conr	nection required by ticking the app	ropriate box below:
12	*Please indicate the type of conr Both Water and Wastewater	nection required by ticking the app Please complete both Sections D a	•
12			•
12	Both Water and Wastewater	Please complete both Sections D a	•
12	Both Water and Wastewater Water only	Please complete both Sections D a Please go to Section D Please go to Section E	•
12	Both Water and Wastewater Water only Wastewater only	Please complete both Sections D a Please go to Section D Please go to Section E	•
12	Both Water and Wastewater Water only Wastewater only	Please complete both Sections D a Please go to Section D Please go to Section E	•
12	Both Water and Wastewater Water only Wastewater only	Please complete both Sections D a Please go to Section D Please go to Section E	•

13	*Is there an existing connection to public wate	r mains at the site?	Yes No				
13.1	If yes, is this enquiry for an additional connection	to one already installed?	Yes No				
13.2	If yes, is this enquiry to increase the size of an ex	isting connection?	Yes No				
14	Approximate date water connection is require	d:					
15	*What diameter of water connection is require	ed to service the developmer	mt? mm				
16	*Is more than one connection required to the part to service this development?	Yes No No					
	If 'Yes', how many?						
17	Please indicate the business water demand (s	hops, offices, schools, hotel	s, restaurants, etc.):				
	Post-development peak hour water demand		l/s				
	Post-development average hour water demand		l/s				
	Please include calculations on the attached sheet pin the water demand profile, please provide all su		a daily/weekly/seasonal variation				
18	Please indicate the industrial water demand (Please indicate the industrial water demand (industry-specific water requirements):					
	Post-development peak hour water demand		l/s				
	Post-development average hour water demand		l/s				
	Please include calculations on the attached sheet print the water demand profile, please provide all su		a daily/weekly/seasonal variation				
19	What is the existing ground level at the prope Head Ordnance Datum?	rty boundary at connection	point (if known) above Malin				
20	What is the highest finished floor level of the pr	oposed development above l	Malin Head Ordnance Datum?				
21	Is on-site water storage being provided?		Yes No				
	Please include calculations on the attached sheet						

Section D | Water connection and demand details

22	Are there fire flow requirements?	Yes No				
	Additional fire flow requirements over and above those identified in Q17-18		l/s			
	ation of requirements from the					
23	Do you propose to supplement your potable wa	iter supply from other sources	? Yes No			
If 'Yes', please indicate how you propose to supplement your potable water supply from other sources (see Guide to completing the application form on page 15 of this document for further details):						
Sec	tion E Wastewater connection and di	scharge details				
366		-				
24	*Is there an existing connection to a public se		Yes No No			
24.1	If yes, is this enquiry for an additional connection	•	Yes No No			
24.2	If yes, is this enquiry to increase the size of an ex	cisting connection?	Yes No No			
25	*Approximate date that wastewater connect	ion is required:				
26	*What diameter of wastewater connection is	required to service the develo	pment? mm			
27	*Is more than one connection required to the to service this development?	public infrastructure	Yes No No			
	If 'Yes', how many?					
28	Please indicate the commercial wastewater hyd	draulic load (shops, offices, sch	ools, hotels, restaurants, etc.):			
	Post-development peak discharge		l/s			
	Post-development average discharge	l/s				
	Please include calculations on the attached shee	t provided.				
29	Please indicate the industrial wastewater hydrogen	draulic load (industry-specific	: discharge requirements):			
	Post-development peak discharge		l/s			
	Post-development average discharge		I/s			

Please include calculations on the attached sheet provided.

30	Wastewater	organic	load:
----	------------	---------	-------

Characteristic	Max concentration (mg/l)	Average concentration (mg/l)	Maximum daily load (kg/day)			
Biochemical oxygen demand (BOD)						
Chemical oxygen demand (COD)						
Suspended solids (SS)						
Total nitrogen (N)						
Total phosphorus (P)						
Other						
Temperature range						
pH range						
If 'Yes', please give reason f	or discharge and comment	on adequacy of SUDS/atten	uation measures proposed.			
Please submit detailed calculations on discharge volumes, peak flows and attenuation volumes with this application *Do you propose to pump the wastewater? Yes No						
If 'Yes', please include justifi	ication for your pumped sol	ution with this application.				
What is the existing ground level at the property boundary at connection point (if known) above Malin Head Ordnance Datum?						
What is the lowest finished floor level on site above Malin Head Ordnance Datum?						
What is the proposed invert level of the pipe exiting the property to the public road?						

Section F | Supporting documentation Please provide the following additional information (all mandatory): Site location map: A site location map to a scale of 1:1000, which clearly identifies the land or structure to which the enquiry relates. The map shall include the following details: i. The scale shall be clearly indicated on the map. ii. The boundaries shall be delineated in red. iii. The site co-ordinates shall be marked on the site location map. Details of planning and development exemptions (if applicable). > Calculations (calculation sheets provided below). Site layout map to a scale of 1:500 showing layout of proposed development, water network and wastewater network layouts, additional water/wastewater infrastructure if proposed, connection points to Irish Water infrastructure. Conceptual design of the connection asset from the proposed development to the existing Irish Water infrastructure, including service conflicts, gradients, pipe sizes and invert levels. Any other information that might help Irish Water assess this pre-connection enquiry. **Section G | Declaration** I/We hereby make this application to Irish Water for a water and/or wastewater connection as detailed on this form. I/We understand that any alterations made to this application must be declared to Irish Water. The details that I/we have given with this application are accurate. I/We have enclosed all the necessary supporting documentation. Any personal data you provide will be stored and processed by Irish Water and may be transferred to third parties for the purposes of the water and/or wastewater connection process. I hereby give consent to Irish Water to store and process my personal data and to transfer my personal data to third parties, if required, for the purposes of the connection process. If you wish to revoke consent at any time or wish to see Irish Water's full Data Protection Notice, please see https://www.water.ie/privacy-notice/ Date: Signature: Your full name (in BLOCK CAPITALS):

Irish Water will carry out a formal assessment based on the information provided on this form.

Any future connection offer made by Irish Water will be based on the information that has been provided here.

Please submit the completed form to **newconnections@water.ie** or alternatively, post to:

Irish Water PO Box 860 South City Delivery Office Cork City Please note that if you are sending us your application form and any associated documentation by email, the maximum file size that we can receive in any one email is 35MB.

Please note, if mandatory fields are not completed the application will be returned.

Irish Water is subject to the provisions of the Freedom of Information Act 2014 ("FOIA") and the codes of practice issued under FOIA as may be amended, updated or replaced from time to time. The FOIA enables members of the public to obtain access to records held by public bodies subject to certain exemptions such as where the requested records may not be released, for example to protect another individual's privacy rights or to protect commercially sensitive information. Please clearly label any document or part thereof which contains commercially sensitive information. Irish Water accepts no responsibility for any loss or damage arising as a result of its processing of freedom of information requests.

Calculations Water demand

On-site storage			
Fire flow requirements			
The new regalitements			

Foul Wastewater discharge			

riow balancing and pumping		

Guide to completing the pre-connection enquiry form

This form should be completed by applicants enquiring about the feasibility of a water and/or wastewater connection to Irish Water infrastructure.

The Irish Water Codes of Practice are available at **www.water.ie** for reference.

Section A | Applicant Details

- **Question 1:** This question requires the applicant or company enquiring about the feasibility of a connection to identify themselves, their postal address, and to provide their contact details.
- **Question 2:** If the applicant has employed a consulting engineer or an agent to manage the enquiry on their behalf, the agent's address and contact details should be recorded here.
- **Question 3:** Please indicate whether it is the applicant or the agent who should receive future correspondence in relation to the enquiry.

Section B | **Site details**

- **Question 4:** This is the address of the site requiring the water/wastewater service connection and for which this enquiry is being made.
- **Question 5:** Please provide the Irish Grid co-ordinates of the proposed site. Irish grid positions on maps are expressed in two dimensions as Eastings (E or X) and Northings (N or Y) relative to an origin. You will find these coordinates on your Ordnance Survey map which is required to be submitted with an application.
- **Question 6:** Please identify the Local Authority that is or will be dealing with your planning application, for example Cork City Council.
- **Question 7:** Please indicate if planning permission has been granted for this application, and if so, please provide the planning permission reference number.
- Question 8: Please indicate if this development is affiliated with a government body/agency, and if so, specify

Section C | Development details

- **Question 9:** Please specify the number of different property/premises types by filling in the tables provided.
- **Question 9.1:** Please provide additional details if your proposed business use are in the Food Processing, Industrial unit/ Manufacturing, Sports Facility or Other Categories.
- **Question 9.2:** Please indicate the maximum expected occupancy in numbers of people according to the proposed development you selected.
- **Question 10:** Please indicate the approximate commencement date of works on the development.
- **Question 11:** Please indicate if a phased building approach is to be adopted when developing the site. If so, please provide details of the phase master-plan and the proposed variation in water demand/wastewater discharge as a result of the phasing of the development.
- **Question 12:** Please indicate the type of connection required by ticking the appropriate box and proceed to complete the appropriate section or sections.

Section D | Water connection and demand details

- **Question 13:** Please indicate if a water connection already exists for this site.
- **Question 13.1:** Please indicate if this enquiry concerns an additional connection to one already installed on the site.
- **Question 13.2:** Please indicate if you are proposing to upgrade the water connection to facilitate an increase in water demand. Irish Water will determine what impact this will have on our infrastructure.
- **Question 14:** Please indicate the approximate date that the proposed connection to the water infrastructure will be required.
- **Question 15:** Please indicate what diameter of water connection is required to service this development.

- **Question 16:** Please indicate if more than one connection is required to service this development. Please note that the connection size provided may be used to determine the connection charge.
- **Question 17:** If this connection enquiry concerns a business premises, please provide calculations for the water demand and include your calculations on the calculation sheet provided. Business premises include shops, offices, hotels, schools, etc. Demand rates (peak and average) are site specific. Average demand is the total daily volume divided by a 24-hour time period and expressed in litres per second (l/s). For design purposes, please refer to the Irish Water Codes of Practice for Water Infrastructure.
- **Question 18:** If this connection enquiry is for an industrial premises, please calculate the water demand and include your calculations on the calculation sheet provided. Demand rates (peak and average) are site specific. Average demand is the total daily volume divided by a 24-hour time period and expressed in litres per second (l/s). The peak demand for sizing of the pipe network will be as per the specific business production requirements. For design purposes, please refer to the Irish Water Codes of Practice for Water Infrastructure.
- **Question 19:** Please specify the ground level at the location where connection to the public water mains will be made. This is required in order to determine if there is sufficient pressure in the existing water infrastructure to serve your proposed development. Levels should be quoted in metres relative to Malin Head Ordnance Datum.
- **Question 20:** Please specify the highest finished floor level on site. This is required in order to determine if there is sufficient pressure in the existing water infrastructure to serve your proposed development. Levels should be quoted in metres relative to Malin Head Ordnance Datum.
- **Question 21:** If storage is required, water storage capacity of 24-hour water demand must usually be provided at the proposed site. In some cases, 24-hour storage capacity may not be required, for example 24-hour storage for a domestic house would be provided in an attic storage tank. Please calculate the 24-hour water storage requirements and include your calculations on the attached sheet provided. Please also confirm that on-site storage is being provided by ticking the appropriate box.
- Question 22: The water supply system shall be designed and constructed to reliably convey the water flows that are required of the development including fire flow requirements by the Fire Authority. The Fire Authority will provide the requirement for fire flow rates that the water supply system will have to carry. Please note that while flows in excess of your required demand may be achieved in the Irish Water network and could be utilised in the event of a fire, Irish Water cannot guarantee a flow rate to meet your fire flow requirement. To guarantee a flow to meet the Fire Authority requirements, you should provide adequate fire storage capacity within your development. Please include your calculations on the attached sheet provided, and further provide confirmation of the Fire Authority requirements.
- **Question 23:** Please identify proposed additional water supply sources, that is, do you intend to connect to the public water mains or the public mains and supplement from other sources? If supplementing public water supply with a supply from another source, please provide details as to how the potable water supply is to be protected from cross contamination at the premises.

Section E | Wastewater connection and discharge details

- **Question 24:** Please indicate if a wastewater connection to a public sewer already exists for this site.
- **Question 24.1:** Please indicate if this enquiry relates to an additional wastewater connection to one already installed.
- **Question 24.2:** Please indicate if you are proposing to upgrade the wastewater connection to facilitate an increased discharge. Irish Water will determine what impact this will have on our infrastructure.
- **Question 25:** Please specify the approximate date that the proposed connection to the wastewater infrastructure will be required.
- **Question 26:** Please indicate what diameter of wastewater connection is required to service this development.
- **Question 27:** Please indicate if more than one connection is required to service this development. Please indicate number required.
- **Question 28:** If this enquiry relates to a business premises, please provide calculations for the wastewater discharge and include your calculations on the attached sheet provided. Business premises include shops, offices, hotels, schools, etc. Discharge rates (peak and average) are site specific. Average discharge is the total daily volume divided by a 24-hour time period and expressed in litres per second (l/s). For design purposes, please refer to the Irish Water Codes of Practice for Wastewater Infrastructure.

- **Question 29:** If this enquiry relates to an industrial premises, please provide calculations for the wastewater discharge and include your calculations on the calculation sheet provided. Discharge rates (peak and average) are site specific. Average discharge is the total daily volume divided by a 24-hour time period and expressed in litres per second (l/s). The peak discharge for sizing of the pipe network will be as per the specific business production requirements. For design purposes, please refer to the Irish Water Codes of Practice for Wastewater Infrastructure.
- Question 30: Please specify the maximum and average concentrations and the maximum daily load of each of the wastewater characteristics listed in the wastewater organic load table (if not domestic effluent), and also specify if any other significant concentrations are expected in the effluent. Please complete the table and provide additional supporting documentation if relevant. Note that the concentration shall be in mg/l and the load shall be in kg/day. Note that for business premises (shops, offices, schools, hotels, etc.) for which only domestic effluent will be discharged (excluding discharge from canteens/ restaurants which would require a Trade Effluent Discharge licence), there is no need to complete this question.
- Question 31: In exceptional circumstances, such as brownfield sites, where the only practical outlet for storm/ surface water is to a combined sewer, Irish Water will consider permitting a restricted attenuated flow to the combined sewer. Storm/surface water will only be accepted from brownfield sites that already have a storm/surface water connection to a combined sewer and the applicant must demonstrate how the storm/surface water flow from the proposed site is minimised using sustainable urban drainage system (SUDS). This type of connection will only be considered on a case by case basis. Please advise if the proposed development intends discharging surface water to the combined wastewater collection system.
- **Question 32:** Please specify if the development needs to pump its wastewater discharge to gain access to Irish Water infrastructure.
- **Question 33:** Please specify the ground level at the location where connection to the public sewer will be made. This is required to determine if the development can be connected to the public sewer via gravity discharge. Levels should be quoted in metres relative to Malin Head Ordnance Datum.
- **Question 34:** Please specify the lowest floor level of the proposed development. This is required in order to determine if the development can be connected to the public sewer via gravity discharge. Levels should be quoted in metres relative to Malin Head Ordnance Datum.
- **Question 35:** Please specify the proposed invert level of the pipe exiting the property to the public road.

Section F | Supporting documentation

Please provide additional information as listed.

Section G | Declaration

Please review the declaration, sign, and return the completed application form to Irish Water by email or by post using the contact details provided in Section G.

Notes			

Notes			