

GFSC Moneenageisha Road Galway Ireland

Tel: +353 (0)91 752000 **Fax:** +353 (0)91 753000

website: www.coylekennedy.com mail@coylekennedy.com

Report on the Proposed

Surface Water, Wastewater & Watermain Layout

For

Housing Development

At

St. Josephs Road Portumna Co. Galway

For

Galway County Council

12th May 2025

English Office: Third Floor GW Business Centre Great West House Great West Road Brentford TW8 9DF England

Tel: +44 (0)203 393 1174 Fax: +44 (0)203 004 1234

Coyle Kennedy Limited Registered in Ireland 346183

Brian Coyle BE CEng MIEI MIStructE
Tadhg Kennedy BE MEngSc CEng MIEI MIStructE

Revision History

Revision	Revision Date	Details	Name	Position
A	20/05/2025	Dwg 300,301,306 Revised	B. Coyle	Director

Contents

Introduction	3
Site Description	3
Proposed Surface Water Drainage Strategy	4
Allowance for Climate Change	4
Controlled Discharge	4
Policy Context	4
Preferred SuDS Methods (as per GCC Guidance)	5
Proposed Surface Water Drainage Strategy	5
Design Performance Objectives	6
Hydraulic Design Parameters	6
Drainage Infrastructure and Flow Management	7
Sustainable Urban Drainage Systems	8
Requirement for Oil, Grit, and Silt Trap Interceptors	10
Uisce Eireann Confirmation - Foul & Water connection can be Facilitated	10
Proposed Foul Sewer Drainage Strategy	10
Water Supply	11
Conclusion	11
Appendix 1 Uisce Eireann Confirmation that a connection can be Facilitated	13
Appendix 2 Rainfall Analysis Simulation	14
Appendix 3 Drawings, Details & Calculations	15

Introduction

This Civil Engineering Drainage Report has been prepared as part of the planning application documentation for the proposed residential development at St. Joseph's Road, Portumna, Co. Galway. It presents the proposed drainage infrastructure in support of the planning submission and outlines the design approach for foul and surface water drainage, as well as water supply provisions, in accordance with the requirements of Galway County Council, Uisce Éireann, and relevant national standards. The drainage design is developed in line with best practice and includes the integration of Sustainable Urban Drainage Systems (SUDS) to manage runoff and improve water quality. This report has been prepared in close collaboration with Galway County Council and the broader design team to ensure a coordinated and integrated approach. It is informed by a detailed Hydrology Assessment and Geotechnical Site Investigation, which provide the basis for a drainage strategy responsive to the site's specific ground conditions and hydrological characteristics. This report forms a key component of the planning submission and should be read in conjunction with the architectural drawings, landscaping proposals, and the technical inputs of other design disciplines to ensure a holistic understanding of the proposed development.

Site Description

The proposed development site (circa 1.5 hectares) is situated at St. Josephs Road, Portumna, Co. Galway, occupying a greenfield area with a gradual slope. The site's natural topography presents an opportunity to integrate sustainable drainage solutions that complement the existing hydrological characteristics.

Extract from Google Maps

The existing public foul sewer network runs along St. Joseph's Road, located at the southwest boundary of the site, and has been identified as the most appropriate

connection point for wastewater discharge. An existing surface water drainage system is also present, offering a suitable outfall for surface water runoff. Additionally, a watermain runs along St. Joseph's Road and will provide the primary water supply to the development.

The proposed development comprises residential units, internal access roads, and landscaped green spaces. The stormwater management strategy focuses on the use of Sustainable Drainage Systems (SUDS) to manage runoff at source, enhance infiltration, and promote environmental sustainability, while controlling and limiting surface water discharge to the public network.

The preferred approach for the proposed development was to achieve a gravity foul water connection, which has been made possible by raising the site and house levels. Groundwater was encountered at shallow depths during the Geotechnical site investigation, and raising the ground levels not only supports the gravity flow for the foul water system but also provides an effective surface water drainage strategy. The elevation, along with insights from the Hydrology Assessment, helps to manage runoff more effectively and contributes to a more sustainable drainage solution for the site.

Proposed Surface Water Drainage Strategy

Allowance for Climate Change

Surface water runoff and attenuation calculations for the proposed development are based on regional rainfall data, with a 20% increase applied to account for the potential impacts of climate change. This allowance has been incorporated into the design in accordance with current best practice. The approach supports the development of a resilient drainage system, capable of accommodating increased rainfall intensities over its design life and helping to manage in so far as reasonable practicable surface water effectively during periods of heavy rainfall.

Controlled Discharge

The drainage strategy for the site, which extends to approximately 1.5 hectares, incorporates Sustainable Drainage Systems (SUDS), including a hybrid soakaway and attenuation zone. A controlled discharge rate of 2 l/s/hectare has been adopted in accordance with best practice, with the system designed to accommodate a 1:100 year storm event, including a 20% allowance for climate change.

Policy Context

The proposed Surface Water Drainage Strategy for the new development has been designed to align with the policy objectives of the *Galway County Development Plan*, supporting a sustainable and efficient approach to stormwater management. The strategy complies with Policy Objectives WW 7 (*Sustainable Drainage Systems*), WW 8 (*Storm*

Water Infrastructure), and WW 11 (Surface Water Drainage) by integrating best-practice Sustainable Drainage Systems (SuDS) to manage surface water runoff, improve water quality, and reduce the impact on existing drainage infrastructure.

Preferred SuDS Methods (as per GCC Guidance)

Galway County Council recognises the value of SuDS in effective surface water management and environmental protection. However, in this instance, permeable paving has been excluded from the proposed strategy following consultation with the Council, due to their opinion, of its high long-term maintenance requirements. As a result, alternative SuDS methods have been prioritised.

Preferred methods include:

- Filter drains
- Soakaways
- Rain gardens
- Redirecting runoff from hard surfaces into natural percolation areas, grassland or constructed wetlands

These options offer effective stormwater management with reduced maintenance demands, contributing to the Council's aims of developing resilient, sustainable, and cost-efficient drainage systems.

Proposed Surface Water Drainage Strategy

The site measures approximately 1.5 hectares, and the surface water drainage system has been designed to manage stormwater efficiently while preserving the site's natural characteristics. A hybrid approach incorporating both traditional infrastructure and SuDS features is proposed to manage runoff rates and enhance infiltration.

A controlled discharge rate of 2 l/s/hectare has been adopted, designed to accommodate a 1:100-year storm event, with a 20% allowance in rainfall intensity to account for climate change.

The surface water drainage system for the proposed residential development has been prepared in accordance with national and local standards, and best practice guidance. The following documents have been used to inform the design intent:

- Local Authority drainage design and development plan policies.
- BS EN 752 *Drain and Sewer Systems Outside Buildings*, for general design principles and hydraulic performance targets
- Greater Dublin Regional Code of Practice GDRCP which outlines stormwater design standards for Irish residential developments.

- Greater Dublin Strategic Drainage Study (GDSDS). Technical Document on New Developments.
- BS EN 858-2 *Separator Systems for Light Liquids*, ensuring oil interceptors are properly designed for environmental protection.

Design Performance Objectives

The surface water system has been prepared to meet the following minimum performance criteria:

- No surcharging of the pipe network shall occur during storm events with a return period of 1 in 5 years (20% AEP).
- No flooding anywhere on site, except where specifically designed and approved for exceedance events (e.g. detention basins or swales), shall occur during the 1 in 30-year (3.33% AEP) rainfall event.
- No internal property flooding shall occur during storms with a return period of 1 in 100 years (1% AEP).

Hydraulic Design Parameters

The design has been carried out using the following technical standards and input data:

- Pipe velocities: Minimum 1.0 m/s, maximum 3.0 m/s (self-cleansing criteria).
- Colebrook-White roughness value: k = 0.6 mm.
- Runoff Method: Time of Concentration of 5minutes with a Volumetric Runoff Coefficient of 0.75 for Summer and 0.840 for Winter with 100% Impervious surfaces for Roads, Roofs, Parking etc. The rainfall runoff falling directly over the soakaway is also taken as 100% impervious with a time of concentration exceeding two hours representing percolation through the soil over the soakaway before entering the soakaway.
- Time of entry: 5 minutes for Impervious Surfaces, representing average inlet delay. 139mins for rainfall falling on and percolating through soil over soakaway.
- Rainfall data source: Rainfall parameters can be estimated using the Met Éireann long-term data or using the Flood Studies Report (FSR). The FSR library data contained within the Info Drainage software is used as follows;
 - o M5-60 rainfall intensity = 17.2 mm
 - o Rainfall ratio (r) = 0.350

- Design return periods:
 - 30-year + CC 20% for pipe Sizing (normally taken as 5-year)
 - o 30-year +CC 20% for overland and site-wide flooding checks
 - o 100-year +CC 20% for site wide property flood check
- Climate change allowance: 20% increase in rainfall intensity has been adopted even though 10% is required in the GDSDS.
- Percolation Factor of Safety: A factor of Safety of 2.0 has been adopted in the design for reduced infiltration rate of the soil to account for silting up or poor maintenance. While this is normally a UK requirement nevertheless it has been adopted here as part of this analysis.

Drainage Infrastructure and Flow Management

The proposed drainage system combines conventional drainage infrastructure with Sustainable Drainage Systems (SuDS) to effectively manage surface water across the site. Silt trap gullies will be strategically located to capture sediment and debris before runoff enters the main drainage network. Runoff from areas such as car parks will pass through an oil and grit interceptor, which removes residual hydrocarbons, fine sediments, and other pollutants.

Surface water will be directed into three primary attenuation and soakaway areas, situated within landscaped green spaces. These features are designed to temporarily store runoff and allow gradual infiltration into the subsoil, mimicking the site's natural drainage patterns. The largest attenuation area includes a flow control device (e.g. an orifice plate), which restricts discharge to approximately 3 litres per second into the public drainage network. To manage extreme rainfall or potential blockages, all soakaways are equipped with emergency overflow routes that direct excess water to the public system.

The two smaller soakaways are positioned near the site entrance and are intended to handle runoff from building roofs, adjacent footpaths, and a short section of the access road.

The soakaways have been analysed and designed with a base level of 41.400. Although the proposed constructed base level is shown as 41.200 on the drawing thereby providing additional storage capacity. This benefit has been conservatively excluded from the analysis. Soakaway 1 has been assigned a voids ratio of 90%, while Soakaways 2 and 3 have been assigned a voids ratio of 50%. Rainfall events for the 1:30 and 1:100 storm return periods have been increased by 20% to account for the anticipated effects of climate change.

During the geotechnical site investigation, groundwater was encountered in trial holes at approximately 800mm below the lowest existing ground level of the site. It is assumed

that groundwater levels may rise further during more extreme events; therefore, the soakaway system has been designed on the basis that infiltration will occur predominantly through the sides of the soakaway and not the base.

To manage water levels effectively, a controlled discharge mechanism has been incorporated into the design. A minimum 80mm diameter orifice discharge pipe has been positioned midway up the side of Soakaway 1 to allow overflow into the main drainage network once water reaches this level.

Rainfall onto the grassed area above the soakaway has also been accounted for, as it is expected to infiltrate through the shallow soil layer and contribute to the soakaway's catchment volume. An entry time in excess of two hours has been adopted for this percolation, based on anticipated infiltration rates through the overburden soil.

All hardstanding areas are considered fully impervious, with a Volumetric Runoff Coefficient (Cv) of 0.75 applied for summer conditions and 0.85 for winter.

Based on the above design parameters, the maximum water levels have been calculated and are summarised in the table below. All finished floor levels are set at least 500mm above the calculated maximum water levels to safeguard against potential overland flow and surcharge from stormwater storage.

Finished Floor Level mAOD	Structural Slab Level mAOD	1:30 Year Event +20% CC mAOD	1:100 Year Event + 20% CC mAOD
43.250	43.025	41.935	42.036

Sustainable Urban Drainage Systems

NB-SUDS – Pedestrian Routes, Amenity Areas, Paths etc. (Filtration & Treatment through Sub-base and Rain Gardens)

Some of the pedestrian routes, patio areas, paths, etc., will consist of impermeable surfaces. All such surfaces will adopt a Nature-Based Sustainable Drainage solution as runoff into a rain garden or landscape green. Both methods are a source control Sustainable Urban Drainage System.

Example of Urban Rain Garden extract from NBS Best Practice Guidance Document (Government of Ireland Publication)

The above image is extracted from the publication titled 'Nature-Based Solutions to the Management of Rainwater and Surface Water Runoff in Urban Areas.' Such nature-based solutions will be adopted in this development and will be used to drain some of the impermeable surface areas.

NB-SUDS - Rain Garden

The utilisation of the proposed rain garden as a Nature-Based Sustainable Urban Drainage System (NB-SUDS) offers numerous benefits. Not only does it slow the rate of discharge and improve water quality, but it also promotes biodiversity and provides year-round seasonal interest and green spaces for recreational activities within the development. This site will be enhanced, landscaped, and planted with vegetation that can withstand occasional temporary inundation, serving as an attractive feature in the landscape. As a natural SuDS feature, the rain garden will facilitate filtration through the vegetation and soil media, contributing to improved water quality. The green areas will also promote natural percolation of surface water runoff, similar to pre-development conditions.

SUDS - Soakaways

The proposed soakaways are a sustainable drainage system designed to effectively manage surface water runoff from hard surface areas. The soakaways consist of a zone with natural permeable materials (e.g., clean stone with 50%-90% voids) surrounded with a geotextile. When water flows into the soakaway, it is stored in the voids where impurities biodegrade and water quality is improved before infiltrating into the ground, reducing the risk of surface flooding and helping to recharge groundwater supplies.

The soakaway aid groundwater recharge, mitigate pollution, and enhance water quality before it percolates and discharges. As a low-impact development solution, the proposed

soakaways integrate sustainable drainage practices into urban planning, reducing environmental impacts while bolstering resilience to climate-related challenges.

Requirement for Oil, Grit, and Silt Trap Interceptors

The necessity of oil and grit interceptors has been evaluated based on the expected contaminant loads within the surface water drainage system. The following factors have been considered:

Silt Trap Gullies as a Primary Filtration Measure

Silt trap gullies at inlet points to filter drains will limit the entry of coarse sediments, reducing maintenance demands and improving system efficiency.

Potential for Hydrocarbon Contamination

In low-traffic residential parking areas, the risk of significant hydrocarbon contamination is low, and microbial degradation within filter material is sufficient based on industry practice.

Interceptor Placement Before Attenuation Area

To reduce pollutants accumulating in the attenuation area, a interceptor is recommended at the final discharge point before stormwater enters the storage system. This interceptor is intended to remove residual oils, fine sediments, and other contaminants, ensuring compliance with environmental protection guidelines.

Maintenance Considerations

Regular inspection and periodic jet-washing of silt trap gullies, drains will be required to prevent clogging. As is normal practice, the proposed interceptor will be subject to scheduled maintenance to remove accumulated oils and grit, to maintain long-term system performance.

Uisce Eireann Confirmation - Foul & Water connection can be Facilitated

On the 27th of March 2025, Uisce Eireann provided a letter confirming that a foul and watermain connection to the Uisce Eireann networks can be facilitated without requirement for infrastructure upgrade. A copy of this letter is included in the Appendix A of this report.

Proposed Foul Sewer Drainage Strategy

A dedicated foul sewer network is proposed to collect wastewater from all residential units and convey it via gravity flow to the existing public foul sewer system. The existing

foul sewer manhole, located in the main road at the southeast end of the site, provides a suitable connection point with an adequate invert level to accommodate gravity drainage.

Alternative connection points, including the foul sewer network running east along St. Josephs Road, were assessed but deemed unsuitable due to insufficient depth.

It is intended that the proposed foul sewer network will be designed and constructed in accordance with Building Regulations and with Uisce Éireann's Code of Practice, ensuring compliance with pipeline gradients, minimum cover depths/protection, and access chamber requirements for ease of maintenance. Regularly spaced manholes and inspection chambers will be provided to facilitate cleaning and monitoring of the system.

Water Supply

The proposed development will be served by a new potable water supply network, connected to the existing Uisce Éireann infrastructure. Each dwelling will be provided with an individual metered connection. Adequate pipeline sizing and pressure management measures shall be implemented to maintain sufficient supply across the development. Fire hydrants shall be installed in strategic locations in compliance with safety regulations and emergency response requirements. The availability of firefighting water for this housing development is not part of the requirements of this submission and is subject to assessment and agreement at detailed design stage.

Conclusion

The proposed drainage and water services strategy for the residential development at St. Joseph's Road, Portumna, Co. Galway has been carefully developed to meet both regulatory requirements and the specific characteristics of the site. The proposed drainage solutions has been developed with reference to a Hydrological Assessment carried out by Hydro Environmental Ltd for this site. The drainage strategy complies with the Greater Dublin Regional Code of Practice for Drainage Works, IS EN 752:2008, Uisce Éireann standards, and the relevant policies of the Galway County Development Plan.

The surface water management approach prioritises the use of Sustainable Urban Drainage Systems (SuDS), incorporating nature-based solutions such as rain gardens, and soakaways. These systems manage runoff close to source, improve water quality, promote biodiversity, and reduce pressure on public infrastructure. The design has been informed by a hydrological assessment and geotechnical site investigation, both of which confirmed the site's suitability for infiltration-based systems. Surface water runoff has been designed to discharge at a controlled rate of 2 l/s/ha, with the system capable of accommodating a 1:100-year storm event plus a 20% allowance for climate change.

Hydraulic modelling has confirmed that the proposed surface water system will operate effectively during 1:100 rainfall events, with no anticipated flooding of properties or public areas under design conditions. As normal, it is acknowledged that the performance of these systems is based on ideal operational conditions, and routine inspection and maintenance will be essential to ensure ongoing functionality.

The foul drainage network will operate under gravity, discharging to the existing public sewer without the need for pumping. Uisce Éireann has confirmed that both the foul and potable water connections can be facilitated without requiring infrastructure upgrades. The potable water supply will connect to the public watermain along St. Joseph's Road, with adequate capacity to serve the proposed development, including the provision of individual metered connections and fire hydrants. Fire fighting water requirements are not part of this planning report.

In summary, the proposed drainage design represents a sustainable, technically robust, and policy-compliant solution that supports the long-term resilience of the development. It integrates environmental best practices with proven engineering design, ensuring that the development contributes positively to the surrounding area while meeting all relevant planning and infrastructure requirements.

Appendix 1 Uisce Eireann Confirmation that a connection can be Facilitated

CONFIRMATION OF FEASIBILITY

Brian Coyle & Alan Clancy GFSC Moneengeisha Road Galway H91P48P

27 March 2025

Uisce Éireann

Bosca OP 448 Oifig Sheachadta na Cathrach Theas Cathair Chorcaí

Uisce Éireann PO Box 448 South City Delivery Office Cork City

www.water.ie

Our Ref: CDS24010307 Pre-Connection Enquiry Site at, St Josephs Road, Portumna, Galway

Dear Applicant/Agent,

We have completed the review of the Pre-Connection Enquiry.

Uisce Eireann has reviewed the pre-connection enquiry in relation to a Water & Wastewater connection for a Housing Development of 55 unit(s) at Site at, St Josephs Road, Portumna, Galway, (the **Development**).

Based upon the details provided we can advise the following regarding connecting to the networks;

 Water Connection - Feasible without infrastructure upgrade by Uisce Éireann

• Wastewater Connection - Feasible without infrastructure upgrade by Uisce Éireann

This letter does not constitute an offer, in whole or in part, to provide a connection to any Uisce Éireann infrastructure. Before the Development can be connected to our network(s) you must submit a connection application and be granted and sign a connection agreement with Uisce Éireann.

As the network capacity changes constantly, this review is only valid at the time of its completion. As soon as planning permission has been granted for the Development, a completed connection application should be submitted. The connection application is available at www.water.ie/connections/get-connected/

Stiúrthóirí / Directors: Niall Gleeson (POF / CEO), Jerry Grant (Cathaoirleach / Chairperson), Gerard Britchfield, Liz Joyce, Michael Nolan, Patricia King, Eileen Maher, Cathy Mannion, Paul Reid, Michael Walsh.

Oifig Chláraithe / Registered Office: Teach Colvill, 24-26 Sráid Thalbóid, Baile Átha Cliath 1, D01 NP86 / Colvill House, 24-26 Talbot Street, Dublin, Ireland D01NP86

Is cuideachta ghníomhaíochta ainmnithe atá faoi theorainn scaireanna é Uisce Éireann / Uisce Éireann is a designated activity company, limited by shares.

Cláraithe in Éirinn Uimh.: 530363 / Registered in Ireland No.: 530363.

Where can you find more information?

• **Section A -** What is important to know?

This letter is issued to provide information about the current feasibility of the proposed connection(s) to Uisce Éireann's network(s). This is not a connection offer and capacity in Uisce Éireann's network(s) may only be secured by entering into a connection agreement with Uisce Éireann.

For any further information, visit www.water.ie/connections, email newconnections@water.ie or contact 1800 278 278.

Yours sincerely,

Dermot Phelan

Connections Delivery Manager

Section A - What is important to know?

What is important to know?	Why is this important?
Do you need a contract to connect?	 Yes, a contract is required to connect. This letter does not constitute a contract or an offer in whole or in part to provide a connection to Uisce Éireann's network(s).
	 Before the Development can connect to Uisce Éireann's network(s), you must submit a connection application and be granted and sign a connection agreement with Uisce Éireann.
When should I submit a Connection Application?	A connection application should only be submitted after planning permission has been granted.
Where can I find information on connection charges?	Uisce Éireann connection charges can be found at: https://www.water.ie/connections/information/charges/
Who will carry out the connection work?	 All works to Uisce Éireann's network(s), including works in the public space, must be carried out by Uisce Éireann*. *Where a Developer has been granted specific permission and has been issued a connection offer for Self-Lay in the Public Road/Area, they may complete the relevant connection works
Fire flow Requirements	 The Confirmation of Feasibility does not extend to fire flow requirements for the Development. Fire flow requirements are a matter for the Developer to determine. What to do? - Contact the relevant Local Fire Authority
Plan for disposal of storm water	 The Confirmation of Feasibility does not extend to the management or disposal of storm water or ground waters. What to do? - Contact the relevant Local Authority to discuss the management or disposal of proposed storm water or ground water discharges.
Where do I find details of Uisce Éireann's network(s)?	Requests for maps showing Uisce Éireann's network(s) can be submitted to: datarequests@water.ie

What are the design requirements for the connection(s)?	•	The design and construction of the Water & Wastewater pipes and related infrastructure to be installed in this Development shall comply with the Uisce Éireann Connections and Developer Services Standard Details and Codes of Practice, available at www.water.ie/connections
Trade Effluent Licensing	•	Any person discharging trade effluent** to a sewer, must have a Trade Effluent Licence issued pursuant to section 16 of the Local Government (Water Pollution) Act, 1977 (as amended).
	•	More information and an application form for a Trade Effluent License can be found at the following link: https://www.water.ie/business/trade-effluent/about/ **trade effluent is defined in the Local Government (Water Pollution) Act, 1977 (as amended)

Appendix 2 Rainfall Analysis Simulation

GCC SOCIAL HOUSING,: ST. JOSEPHS ROAD	Date: 02/05/2025			
PORTUMNA,	Designed by:	Checked by:	Approved By:	
CO. GALWAY	AC	ВС	ВС	
Report Details:	COYLEKENNEDY	CONSULTING ENGIN	IEERS:	
Type: Stormwater Controls	GFSC			
Storm Phase: Phase	MONEENAGE	EISHA ROAD,		COYLE KENNEDY
	GALWAY			Consulting Engineers

Soakaway 1

Type : Infiltration Trench

Dimensions	
Exceedance Elevation (m)	42.250
Depth (m)	0.850
Base Elevation (m)	41.400
Freeboard (mm)	0
Porosity (%)	90
Length (m)	28.000
Long. Slope (1:x)	5000.00
Width (m)	26.000
Total Volume (m³)	556.920

Inlets

Inlet (1)

Inlet Type	Point Inflow
Incoming Item(s)	S5.003
Bypass Destination	(None)
Capacity Type	No Restriction

Inlet (2)

Inlet Type	Point Inflow
Incoming Item(s)	Catchment Area (26)
Bypass Destination	(None)
Capacity Type	No Restriction

Inlet (3)

Inlet Type	Point Inflow
Incoming Item(s)	S1.002
Bypass Destination	(None)
Capacity Type	No Restriction

Outlets

Outlet

Outgoing Connection	S13.000
Outlet Type	Orifice
Diameter (m)	0.077
Coefficient of Discharge	0.600
Invert Elevation (m)	41.710

Advanced

Side Infiltration Rate (m/hr)	0.149
Safety Factor	2.0
Conductivity (m/hr)	900.0

GCC SOCIAL HOUSING,: ST. JOSEPHS ROAD	Date: 02/05/2025			
PORTUMNA,	Designed by:	Checked by:	Approved By:	
CO. GALWAY	AC	вс	BC	
Report Details:	COYLEKENNEDY	CONSULTING ENGIN	IEERS:	
Type: Stormwater Controls	GFSC			
Storm Phase: Phase	MONEENAGEISHA ROAD,		COYLE KENNEDY	
	GALWAY			Consulting Engineers

Soakaway 2

Type : Infiltration Trench

Dimensions

Exceedance Elevation (m)	43.000
Depth (m)	1.600
Base Elevation (m)	41.400
Freeboard (mm)	0
Porosity (%)	50
Length (m)	37.000
Long. Slope (1:x)	5000.00
Width (m)	4.000
Total Volume (m³)	118.400

Inlets

Inlet

Inlet Type	Point Inflow
Incoming Item(s)	S9.001
Bypass Destination	(None)
Capacity Type	No Restriction

Outlets

Advanced

Side Infiltration Rate (m/hr)	0.0547
Safety Factor	2.0
Conductivity (m/hr)	400.0

GCC SOCIAL HOUSING,: ST. JOSEPHS ROAD	Date: 02/05/2025			
PORTUMNA,	Designed by:	Checked by:	Approved By:	
CO. GALWAY	AC	ВС	ВС	
Report Details:	COYLEKENNEDY	CONSULTING ENGIN	IEERS:	
Type: Stormwater Controls	GFSC			
Storm Phase: Phase	MONEENAGEISHA ROAD,		COYLE KENNEDY	
	GALWAY			Consulting Engineers

Soakaway 3

Type : Infiltration Trench

Dimensions	
Exceedance Elevation (m)	42.500
Depth (m)	1.100
Base Elevation (m)	41.400
Freeboard (mm)	0
Porosity (%)	50
Length (m)	13.000
Long. Slope (1:x)	5000.00
Width (m)	4.000
Total Volume (m³)	28.600

Inlets

Inlet

Inlet Type	Point Inflow
Incoming Item(s)	S11.000
Bypass Destination	(None)
Capacity Type	No Restriction

Inlet (1)

Inlet Type	Point Inflow
Incoming Item(s)	S12.000
Bypass Destination	(None)
Capacity Type	No Restriction

Outlets

Advanced

Side Infiltration Rate (m/hr)	0.0547
Safety Factor	2.0
Conductivity (m/hr)	400.0

GCC SOCIAL HOUSING,: ST. JOSEPHS ROAD	Date: 02/05/2025			
PORTUMNA,	ů ,			
CO. GALWAY	AC	BC	BC	
Report Details:	COYLEKENNEDY	CONSULTING ENGIN	IEERS:	
Type: Network Design Criteria	GFSC			C Y
Storm Phase: Phase	MONEENAGI	MONEENAGEISHA ROAD,		COYLE KENNEDY
	GALWAY			Consulting Engineers
Flow Options				

Type: Network Design Criteria Storm Phase: Phase	GFSC MONEENAGEISHA ROAD, GALWAY	COYLE KENNEDY Consulting Engineers
Flow Options		
Peak Flow Calculation Min. Time of Entry (mins) Max. Travel Time (mins)	(UK) Modified Rational Method 5 30	T 50D
FSR		Type: FSR
Return Period (years)	30.0	
Region	Scotland and Ireland	
M5-60 (mm)	17.5	
Ratio R	0.350	
Pipe Options		
Lock Slope Options	None	
Design Options	Minimize Excavation	
Design Level	Level Crowns	
Min. Slope (1:x)	500.00	
Max. Slope (1:x)	40.00	
Min. Velocity (m/s)	1.0	
Max. Velocity (m/s)	3.0	
Use Flow Restriction Reduce Channel Depths		
Manhole Options		
Apply Offset		

GCC SOCIAL HOUSING,: ST. JOSEPHS ROAD	Date: 02/05/2025			
PORTUMNA,	Designed by:	Checked by:	Approved By:	
CO. GALWAY	AC	ВС	BC	
Report Title:	COYLEKENNEDY GFSC	COYLEKENNEDY CONSULTING ENGINEERS: GFSC		
Rainfall Analysis Criteria	MONEENAGEISHA ROAD,		COYLE KENNEDY	
-	GALWAY			Consulting Engineers

Runoff Type	Dynamic
Output Interval (mins)	5
Time Step	Default
Urban Creep	Use Catchment Values
Junction Flood Risk Margin (mm)	300
Perform No Discharge	
Analysis	•
Rainfall Depth (mm)	5.0
Run Time (mins)	1440

Rainfall

FSR Type: FSR

Region	Scotland and Ireland
M5-60 (mm)	17.5
Ratio R	0.350
Summer	✓
Winter	✓

Return Period

Return Period (years)	Increase Rainfall (%)	
30.0	20.000	
100.0	20.000	

Storm Durations

Duration (mins)	Run Time (mins)
15	30
30	60
60	120
120	240
180	360
240	480
360	720
480	960
600	1200
720	1440
960	1920
1440	2880
2160	4320
2880	5760
4320	8640
5760	11520
7200	14400
8640	17280
10080	20160

GCC SOCIAL HOUSING,: ST. JOSEPHS ROAD	Date: 02/05/2025			
PORTUMNA,	Designed by:	Checked by:	Approved By:	
CO. GALWAY	AC	ВС	BC	
Report Details:	COYLEKENNEDY	CONSULTING ENGIN	IEERŠ:	
Type: Inflows Summary	GFSC			
Storm Phase: Phase	MONEENAGE	EISHA ROAD,	COYLE KENNEDY	
	GALWAY			Consulting Engineers

FSR: 30 years: Increase Rainfall (%): +20: Critical Storm Per Item: Rank By: Max. Inflow

Inflow	Storm Event	Inflow Area (ha)	Max. Inflow (L/s)	Total Inflow Volume (m³)
Catchment Area	FSR: 30 years: +20 %: 15 mins: Winter	0.04	14.1	6.545
Catchment Area (1)	FSR: 30 years: +20 %: 15 mins: Winter	0.03	11.1	5.166
Catchment Area (2)	FSR: 30 years: +20 %: 15 mins: Winter	0.02	8.4	3.898
Catchment Area (3)	FSR: 30 years: +20 %: 15 mins: Winter	0.03	9.2	4.291
Catchment Area (4)	FSR: 30 years: +20 %: 15 mins: Winter	0.03	12.1	5.620
Catchment Area (5)	FSR: 30 years: +20 %: 15 mins: Winter	0.04	12.3	5.713
Catchment Area (6)	FSR: 30 years: +20 %: 15 mins: Winter	0.02	7.8	3.636
Catchment Area (7)	FSR: 30 years: +20 %: 15 mins: Winter	0.02	5.9	2.762
Catchment Area (8)	FSR: 30 years: +20 %: 15 mins: Winter	0.03	9.0	4.168
Catchment Area (9)	FSR: 30 years: +20 %: 15 mins: Winter	0.02	6.1	2.816
Catchment Area (10)	FSR: 30 years: +20 %: 15 mins: Winter	0.05	18.7	8.673
Catchment Area (11)	FSR: 30 years: +20 %: 15 mins: Winter	0.02	7.6	3.519
Catchment Area (12)	FSR: 30 years: +20 %: 15 mins: Winter	0.01	5.1	2.368
Catchment Area (13)	FSR: 30 years: +20 %: 15 mins: Winter	0.04	13.8	6.389
Catchment Area (14)	FSR: 30 years: +20 %: 15 mins: Winter	0.03	9.0	4.192
Catchment Area (15)	FSR: 30 years: +20 %: 15 mins: Winter	0.02	5.7	2.633
Catchment Area (16)	FSR: 30 years: +20 %: 15 mins: Winter	0.05	17.6	8.189
Catchment Area (17)	FSR: 30 years: +20 %: 15 mins: Winter	0.03	11.0	5.115
Catchment Area (18)	FSR: 30 years: +20 %: 15 mins: Winter	0.03	12.1	5.635
Catchment Area (19)	FSR: 30 years: +20 %: 15 mins: Winter	0.04	13.9	6.443

GCC SOCIAL HOUSING,: ST. JOSEPHS ROAD	Date: 02/05/2025			
PORTUMNA,	Designed by:	Checked by:	Approved By:	
CO. GALWAY	AC	BC	BC	
Report Details:		CONSULTING ENGIN		
Type: Inflows Summary	GFSC			C W
Storm Phase: Phase	MONEENAGE	EISHA ROAD,	COYLE KENNEDY	
	GALWAY		Consulting Engineers	

Catchment Area (20)	FSR: 30 years: +20 %: 15 mins: Winter	0.02	8.2	3.811
Catchment Area (21)	FSR: 30 years: +20 %: 15 mins: Winter	0.02	6.9	3.183
Catchment Area (22)	FSR: 30 years: +20 %: 15 mins: Winter	0.03	10.7	4.947
Catchment Area (23)	FSR: 30 years: +20 %: 15 mins: Winter	0.03	9.8	4.532
Catchment Area (24)	FSR: 30 years: +20 %: 15 mins: Winter	0.02	5.8	2.678
Catchment Area (25)	FSR: 30 years: +20 %: 15 mins: Winter	0.01	3.4	1.599
Catchment Area (26)	FSR: 30 years: +20 %: 180 mins: Winter	0.09	3.6	32.465

GCC SOCIAL HOUSING,: ST. JOSEPHS ROAD	Date: 02/05/2025			
PORTUMNA,	Designed by:	Checked by:	Approved By:	
CO. GALWAY	AC	BC	BC	
Report Details:	COYLEKENNEDY	CONSULTING ENGIN	EERS:	
Type: Inflows Summary	GFSC			COYLE KENNEDY
Storm Phase: Phase	MONEENAGE	MONEENAGEISHA ROAD,		
	GALWAY	•		Consulting Engineers

FSR: 100 years: Increase Rainfall (%): +20: Critical Storm Per Item: Rank By: Max. Inflow

Inflow	Storm Event	Inflow Area (ha)	Max. Inflow (L/s)	Total Inflow Volume (m³)
Catchment Area	FSR: 100 years: +20 %: 15 mins: Winter	0.04	18.3	8.521
Catchment Area (1)	FSR: 100 years: +20 %: 15 mins: Winter	0.03	14.4	6.729
Catchment Area (2)	FSR: 100 years: +20 %: 15 mins: Winter	0.02	10.9	5.072
Catchment Area (3)	FSR: 100 years: +20 %: 15 mins: Winter	0.03	12.0	5.586
Catchment Area (4)	FSR: 100 years: +20 %: 15 mins: Winter	0.03	15.7	7.321
Catchment Area (5)	FSR: 100 years: +20 %: 15 mins: Winter	0.04	16.0	7.439
Catchment Area (6)	FSR: 100 years: +20 %: 15 mins: Winter	0.02	10.2	4.730
Catchment Area (7)	FSR: 100 years: +20 %: 15 mins: Winter	0.02	7.7	3.593
Catchment Area (8)	FSR: 100 years: +20 %: 15 mins: Winter	0.03	11.7	5.427
Catchment Area (9)	FSR: 100 years: +20 %: 15 mins: Winter	0.02	7.9	3.665
Catchment Area (10)	FSR: 100 years: +20 %: 15 mins: Winter	0.05	24.2	11.290
Catchment Area (11)	FSR: 100 years: +20 %: 15 mins: Winter	0.02	9.8	4.582
Catchment Area (12)	FSR: 100 years: +20 %: 15 mins: Winter	0.01	6.6	3.079
Catchment Area (13)	FSR: 100 years: +20 %: 15 mins: Winter	0.04	17.9	8.317
Catchment Area (14)	FSR: 100 years: +20 %: 15 mins: Winter	0.03	11.7	5.460

GCC SOCIAL HOUSING,: ST. JOSEPHS ROAD	Date: 02/05/2025	[
PORTUMNA,	Designed by:	Checked by:	Approved By:	
CO. GALWAY	AC	BC	ВС	
Report Details:	COYLEKENNEDY	CONSULTING ENGIN	IEERS:	
Type: Inflows Summary	GFSC			
Storm Phase: Phase	MONEENAGE	MONEENAGEISHA ROAD,		COYLE KENNED
	GALWAY			Consulting Engineer

				GALWAY
Catchment Area (15)	FSR: 100 years: +20 %: 15 mins: Winter	0.02	7.4	3.431
Catchment Area (16)	FSR: 100 years: +20 %: 15 mins: Winter	0.05	22.9	10.665
Catchment Area (17)	FSR: 100 years: +20 %: 15 mins: Winter	0.03	14.3	6.663
Catchment Area (18)	FSR: 100 years: +20 %: 15 mins: Winter	0.03	15.8	7.339
Catchment Area (19)	FSR: 100 years: +20 %: 15 mins: Winter	0.04	18.0	8.398
Catchment Area (20)	FSR: 100 years: +20 %: 15 mins: Winter	0.02	10.6	4.961
Catchment Area (21)	FSR: 100 years: +20 %: 15 mins: Winter	0.02	8.9	4.143
Catchment Area (22)	FSR: 100 years: +20 %: 15 mins: Winter	0.03	13.8	6.443
Catchment Area (23)	FSR: 100 years: +20 %: 15 mins: Winter	0.03	12.7	5.896
Catchment Area (24)	FSR: 100 years: +20 %: 15 mins: Winter	0.02	7.5	3.488
Catchment Area (25)	FSR: 100 years: +20 %: 15 mins: Winter	0.01	4.5	2.081
Catchment Area (26)	FSR: 100 years: +20 %: 180 mins: Winter	0.09	4.6	41.596

GCC SOCIAL HOUSING,: ST. JOSEPHS ROAD	Date: 02/05/2025			
PORTUMNA,	Designed by:	Checked by:	Approved By:	
CO. GALWAY	AC	BC	BC	
Report Details:	COYLEKENNEDY	CONSULTING ENGIN	IEERŠ:	
Type: Junctions Summary	GFSC			
Storm Phase: Phase	MONEENAGE	EISHA ROAD,		COYLE KENNEDY
	GALWAY			Consulting Engineers

FSR: 30 years: Increase Rainfall (%): +20: Critical Storm Per Item: Rank By: Max. Depth

Junction	Storm Event		Invert Elevati on (m)	Max. Elevati on (m)	Max. Depth (m)	Max. Inflow (L/s)	Max. Resident Volume (m³)	Max. Flooded Volume (m³)	Max. Outflow (L/s)	Total Discharge Volume (m³)	Status
S1	FSR: 30 years: +20 %: 15 mins: Winter	42.95 0	42.00 0	42.128	0.128	25.2	0.145	0.000	24.3	11.708	ОК
S2	FSR: 30 years: +20 %: 15 mins: Winter	42.95 0	42.110	42.165	0.055	9.2	0.062	0.000	9.0	4.292	ок
S3	FSR: 30 years: +20 %: 15 mins: Winter	42.95 0	41.81 5	41.987	0.172	41.7	0.195	0.000	38.5	19.890	ОК
S4	FSR: 30 years: +20 %: 15 mins: Winter	42.95 0	41.95 0	42.093	0.143	28.7	0.162	0.000	27.6	13.300	ОК
S5	FSR: 30 years: +20 %: 15 mins: Winter	42.95 0	41.95 0	42.081	0.131	26.0	0.148	0.000	25.1	12.076	ОК
S6	FSR: 30 years: +20 %: 15 mins: Winter	42.95 0	41.80 0	42.001	0.201	52.7	0.227	0.000	49.4	25.373	ОК
S7	FSR: 30 years: +20 %: 2160 mins: Winter	42.95 0	41.70 0	41.935	0.235	4.4	0.266	0.000	4.2	223.506	ОК
S8	FSR: 30 years: +20 %: 15 mins: Winter	42.95 0	42.00 5	42.139	0.134	24.4	0.152	0.000	23.6	11.332	ОК
S9	FSR: 30 years: +20 %: 15 mins: Winter	42.95 0	41.88 5	42.012	0.127	23.6	0.144	0.000	22.1	11.315	ОК
S10	FSR: 30 years: +20 %: 15 mins: Winter	42.95 0	41.85 5	41.977	0.122	13.5	0.138	0.000	12.4	6.282	ок
S11	FSR: 30 years: +20 %: 15 mins: Winter	42.95 0	41.76 7	41.963	0.196	51.2	0.221	0.000	48.9	25.394	ОК
S12	FSR: 30 years: +20 %: 15 mins: Winter	43.00 0	42.00 0	42.123	0.123	24.8	0.139	0.000	23.5	11.520	ок
S13	FSR: 30 years: +20 %: 15 mins: Winter	42.95 0	42.05 5	42.173	0.118	18.9	0.134	0.000	18.3	8.751	ОК
S14	FSR: 30 years: +20 %: 15 mins: Winter	42.95 0	41.97 5	42.122	0.147	27.4	0.166	0.000	26.2	12.936	ОК
S15	FSR: 30 years: +20 %: 15 mins: Winter	42.95 0	41.86 2	42.017	0.155	31.8	0.176	0.000	29.9	15.566	ОК
S16	FSR: 30 years: +20 %: 2160 mins: Winter	42.95 0	41.70 0	41.935	0.235	4.4	0.266	0.000	4.2	223.534	ОК
S22	FSR: 30 years: +20 %: 2160 mins: Winter	42.95 0	41.40 0	41.429	0.029	2.3	0.033	0.000	2.3	168.718	ОК
S17	FSR: 30 years: +20 %: 15 mins: Winter	43.30 0	42.40 0	42.480	0.080	10.7	0.090	0.000	10.4	4.943	ОК
S18	FSR: 30 years: +20 %: 15 mins: Winter	43.30 0	42.40 0	42.481	0.081	9.8	0.092	0.000	9.5	4.528	ОК
S19	FSR: 30 years: +20 %: 15 mins: Winter	43.30 0	42.20 0	42.248	0.048	19.9	0.054	0.000	19.7	9.459	ОК
S20	FSR: 30 years: +20 %: 15 mins: Winter	43.10 0	0	42.227	0.027	5.8	0.031	0.000	5.7	2.672	ОК
S21	FSR: 30 years: +20 %: 15 mins: Winter	43.00 0	42.10 0	42.128	0.028	3.4	0.032	0.000	3.4	1.588	ок
S23	FSR: 30 years: +20 %: 2160 mins: Winter	43.00 0	41.00 0	41.028	0.028	2.3	0.032	0.000	2.3	168.717	ОК
S24	FSR: 30 years: +20 %: 2160 mins: Winter	42.40 0	40.70 0	40.728	0.028	2.3	0.032	0.000	2.3	168.717	ОК
S25	FSR: 30 years: +20 %: 2160 mins: Winter	42.10 0	40.50 0	40.526	0.026	2.3	0.029	0.000	2.3	168.716	ОК
OUTFALL EXISTING SW	FSR: 30 years: +20 %: 2160 mins: Winter	41.71 0	40.15 0	40.176	0.026	2.3	0.000	0.000	2.3	168.716	ОК

GCC SOCIAL HOUSING,: ST. JOSEPHS ROAD	Date: 02/05/2025			
PORTUMNA,	Designed by:	Checked by:	Approved By:	
CO. GALWAY	AC	BC	BC	
Report Details:	COYLEKENNEDY	CONSULTING ENGIN	IEERŠ:	
Type: Junctions Summary	GFSC			
Storm Phase: Phase	MONEENAGE	EISHA ROAD,		COYLE KENNEDY
	GALWAY			Consulting Engineers

FSR: 100 years: Increase Rainfall (%): +20: Critical Storm Per Item: Rank By: Max. Depth

Junction	Storm Event		Invert Elevati on (m)	Max. Elevati on (m)	Max. Depth (m)	Max. Inflow (L/s)	Max. Resident Volume (m³)	Max. Flooded Volume (m³)	Max. Outflow (L/s)	Total Discharge Volume (m³)	Status
S1	FSR: 100 years: +20 %: 15 mins: Winter	42.95 0	42.00 0	42.156	0.156	32.7	0.177	0.000	31.4	15.257	ОК
S2	FSR: 100 years: +20 %: 15 mins: Winter	42.95 0	42.110	42.173	0.063	12.0	0.071	0.000	11.8	5.591	ОК
S3	FSR: 100 years: +20 %: 1440 mins: Winter	42.95 0	41.81 5	42.037	0.222	2.8	0.251	0.000	2.8	95.440	ОК
S4	FSR: 100 years: +20 %: 15 mins: Winter	42.95 0	41.95 0	42.150	0.200	37.2	0.226	0.000	33.9	17.332	ОК
S5	FSR: 100 years: +20 %: 15 mins: Winter	42.95 0	41.95 0	42.125	0.175	33.8	0.198	0.000	31.5	15.741	ОК
S6	FSR: 100 years: +20 %: 15 mins: Winter	42.95 0	41.80 0	42.045	0.245	65.4	0.277	0.000	63.3	32.993	ОК
S7	FSR: 100 years: +20 %: 1440 mins: Winter	42.95 0	41.70 0	42.037	0.337	7.2	0.381	0.000	7.0	250.463	ОК
S8	FSR: 100 years: +20 %: 15 mins: Winter	42.95 0	42.00 5	42.169	0.164	31.7	0.185	0.000	30.7	14.746	ОК
S9	FSR: 100 years: +20 %: 30 mins: Winter	42.95 0	41.88 5	42.078	0.193	21.5	0.218	0.000	19.3	19.476	ОК
S10	FSR: 100 years: +20 %: 30 mins: Winter	42.95 0	41.85 5	42.064	0.209	11.7	0.236	0.000	10.7	10.797	ОК
S11	FSR: 100 years: +20 %: 30 mins: Winter	42.95 0	41.76 7	42.055	0.288	44.4	0.326	0.000	42.4	43.552	ОК
S12	FSR: 100 years: +20 %: 15 mins: Winter	43.00 0	42.00 0	42.147	0.147	32.1	0.166	0.000	30.6	14.871	ок
S13	FSR: 100 years: +20 %: 15 mins: Winter	42.95 0	42.05 5	42.200	0.145	24.5	0.164	0.000	23.7	11.386	ОК
S14	FSR: 100 years: +20 %: 15 mins: Winter	42.95 0	41.97 5	42.157	0.182	35.5	0.206	0.000	33.4	16.829	ок
S15	FSR: 100 years: +20 %: 30 mins: Winter	42.95 0	41.86 2	42.100	0.238	27.5	0.269	0.000	26.1	26.747	Surcharged
S16	FSR: 100 years: +20 %: 60 mins: Winter	42.95 0	41.70 0	42.040	0.340	68.6	0.384	0.000	64.9	111.092	Surcharged
S22	FSR: 100 years: +20 %: 1440 mins: Winter	42.95 0	41.40 0	41.432	0.032	3.0	0.037	0.000	3.0	217.895	ОК
S17	FSR: 100 years: +20 %: 15 mins: Winter	43.30 0	42.40 0	42.494	0.094	13.8	0.106	0.000	13.5	6.439	ОК
S18	FSR: 100 years: +20 %: 15 mins: Winter	43.30 0	42.40 0	42.496	0.096	12.7	0.108	0.000	12.3	5.891	ОК
S19	FSR: 100 years: +20 %: 15 mins: Winter		42.20 0	42.256	0.056	25.8	0.063	0.000	25.6	12.317	ОК
S20	FSR: 100 years: +20 %: 15 mins: Winter		42.20 0	42.232	0.032	7.5	0.036	0.000	7.4	3.481	ОК
S21	FSR: 100 years: +20 %: 15 mins: Winter	43.00 0	42.10 0	42.133	0.033	4.5	0.037	0.000	4.4	2.067	ОК
S23	FSR: 100 years: +20 %: 1440 mins: Winter	43.00 0	41.00 0	41.032	0.032	3.0	0.036	0.000	3.0	217.888	ОК
S24	FSR: 100 years: +20 %: 1440 mins: Winter	42.40 0	40.70 0	40.732	0.032	3.0	0.036	0.000	3.0	217.882	ок
S25	FSR: 100 years: +20 %: 1440 mins: Winter	42.10 0	40.50 0	40.529	0.029	3.0	0.033	0.000	3.0	217.877	ОК
OUTFALL EXISTING SW	FSR: 100 years: +20 %: 1440 mins: Winter	41.71 0	40.15 0	40.179	0.029	3.0	0.000	0.000	3.0	217.877	ОК

GCC SOCIAL HOUSING,:	Date:			
ST. JOSEPHS ROAD	02/05/2025			
PORTUMNA,	Designed by:	Checked by:	Approved By:	
CO. GALWAY	AC	BC	BC	
Report Details:	COYLEKENNEDY	CONSULTING ENGIN	IEERS:	
Type: Stormwater Controls Summary	GFSC			6
Storm Phase: Phase	MONEENAGI	EISHA ROAD,		COYLE KENNEDY
	GALWAY			Consulting Engineers

FSR: 30 years: Increase Rainfall (%): +20: Critical Storm Per Item: Rank By: Max. Avg. Depth

Stormwat er Control	Storm Event	Max. US Elevati on (m)	Max. DS Elevati on (m)	Max. US Depth (m)	Max. DS	Max. Inflow (L/s)	Max. Reside nt Volume (m³)	Max. Flood ed Volu me (m³)	Total Lost Volume (m³)	Max. Outflo w (L/s)	Total Dischar ge Volume (m³)	Percentag	Status
Soakaway 1	FSR: 30 years: +20 %: 2160 mins: Winter	41.935	41.907	0.529	0.507	9.6	339.36 0	0.000	177.318	2.3	168.718	39.065	ОК
Soakaway 2	FSR: 30 years: +20 %: 2160 mins: Winter	41.827	41.743	0.420	0.343	0.8	26.822	0.000	32.359	0.0	0.000	77.346	ок
Soakaway 3	FSR: 30 years: +20 %: 1440 mins: Winter	41.852	41.844	0.449	0.444	0.5	11.607	0.000	11.797	0.0	0.000	59.415	ОК

GCC SOCIAL HOUSING,:	Date:			
ST. JOSEPHS ROAD	02/05/2025			
PORTUMNA,	Designed by:	Checked by:	Approved By:	
CO. GALWAY	AC	BC	BC	
Report Details:	COYLEKENNEDY	CONSULTING ENGIN	IEERS:	
Type: Stormwater Controls Summary	GFSC			6
Storm Phase: Phase	MONEENAGI	EISHA ROAD,		COYLE KENNEDY
	GALWAY			Consulting Engineers

FSR: 100 years: Increase Rainfall (%): +20: Critical Storm Per Item: Rank By: Max. Avg. Depth

Stormwat er Control	Storm Event	Max. US Elevati on (m)		Max. US Depth (m)	Max. DS	Max. Inflow (L/s)	Max. Reside nt Volume (m³)	Max. Flood ed Volu me (m³)	Total Lost Volume (m³)	Max. Outflo w (L/s)	Total Dischar ge Volume (m³)	Percentag	Status
Soakaway 1	FSR: 100 years: +20 %: 1440 mins: Winter	42.036	42.007	0.631	0.607	15.7	404.98 6	0.000	146.443	3.0	217.904	27.281	ОК
Soakaway 2	FSR: 100 years: +20 %: 1440 mins: Winter	41.935	41.829	0.528	0.429	1.3	33.185	0.000	29.942	0.0	0.000	71.972	ОК
Soakaway 3	FSR: 100 years: +20 %: 1440 mins: Winter	41.961	41.954	0.559	0.554	0.6	14.458	0.000	14.755	0.0	0.000	49.447	ОК

GCC SOCIAL HOUSING,: ST. JOSEPHS ROAD	Date: 02/05/2025			
PORTUMNA,	Designed by:	Checked by:	Approved By:	
CO. GALWAY	AC	ВС	BC	
Report Details:		CONSULTING ENGIN	IEERS:	
Type: Connections Summary	GFSC			C Y
Storm Phase: Phase	MONEENAGE	EISHA ROAD,		COYLE KENNEDY
	GALWAY			Consulting Engineers

FSR: 30 years: Increase Rainfall (%): +20: Critical Storm Per Item: Rank By: Max. Flow

Connection	Storm Event	Connection Type	From	То	Upstrea m Cover	Max. US Water Elevatio n (m)	Max. Flow	Discharge Volume (m³)	Max. Velocity (m/s)	Flow / Capacity	Max. Flow (L/s)	Status
S1.000	FSR: 30 years: +20 %: 15 mins: Winter	Pipe	S1	S3	42.950	42.128	0.150	11.708	0.9	0.6	24.3	ок
S2.000	FSR: 30 years: +20 %: 15 mins: Winter	Pipe	S2	S3	42.950	42.165	0.114	4.292	0.4	0.14	9.0	ОК
S1.001	FSR: 30 years: +20 %: 15 mins: Winter	Pipe	S3	S7	42.950	41.987	0.177	19.890	0.9	0.55	38.5	ок
S3.000	FSR: 30 years: +20 %: 15 mins: Winter	Pipe	S4	S6	42.950	42.093	0.172	13.300	0.8	0.67	27.6	ок
S4.000	FSR: 30 years: +20 %: 15 mins: Winter	Pipe	S5	S6	42.950	42.081	0.166	12.076	0.8	0.61	25.1	ОК
S3.001	FSR: 30 years: +20 %: 15 mins: Winter	Pipe	S6	S7	42.950	42.001	0.191	25.373	1.0	0.7	49.4	ок
S5.000	FSR: 30 years: +20 %: 15 mins: Winter	Pipe	S8	S9	42.950	42.139	0.131	11.332	1.0	0.59	23.6	ОК
S5.001	FSR: 30 years: +20 %: 15 mins: Winter	Pipe	S9	S11	42.950	42.012	0.162	11.315	0.7	0.55	22.1	ОК
S6.000	FSR: 30 years: +20 %: 15 mins: Winter	Pipe	S10	S11	42.950	41.977	0.159	6.282	0.4	0.3	12.4	ОК
S5.002	FSR: 30 years: +20 %: 15 mins: Winter	Pipe	S11	S16	42.950	41.963	0.197	25.394	1.0	0.57	48.9	ОК
S7.000	FSR: 30 years: +20 %: 15 mins: Winter	Pipe	S12	S16	43.000	42.123	0.161	11.520	0.8	0.58	23.5	ОК
S8.000	FSR: 30 years: +20 %: 15 mins: Winter	Pipe	S13	S14	42.950	42.173	0.133	8.751	0.8	0.45	18.3	ОК
S8.001	FSR: 30 years: +20 %: 15 mins: Winter	Pipe	S14	S15	42.950	42.122	0.151	12.936	0.9	0.66	26.2	ОК
S8.002	FSR: 30 years: +20 %: 15 mins: Winter	Pipe	S15	S16	42.950	42.017	0.177	15.566	0.9	0.75	29.9	ОК
S5.003	FSR: 30 years: +20 %: 15 mins: Winter	Pipe	S16	Soakawa y 1	42.950	41.899	0.300	52.018	2.5	0.6	96.5	ОК
S13.000	FSR: 30 years: +20 %: 2160 mins: Winter	Pipe	Soakaw ay 1	S22	42.256	41.918	0.028	168.717	0.6	0.01	2.3	ок
S9.000	FSR: 30 years: +20 %: 15 mins: Winter	Pipe	S17	S19	43.300	42.480	0.064	4.943	1.5	0.48	10.4	ОК
S10.000	FSR: 30 years: +20 %: 15 mins: Winter	Pipe	S18	S19	43.300	42.481	0.065	4.528	1.3	0.5	9.5	ок
S9.001	FSR: 30 years: +20 %: 15 mins: Winter	Pipe	S19	Soakawa y 2	43.300	42.248	0.150	9.459	1.7	0.23	19.7	ок

GCC SOCIAL HOUSING,: ST. JOSEPHS ROAD	Date: 02/05/2025			
PORTUMNA,	Designed by:	Checked by:	Approved By:	
CO. GALWAY	AC	ВС	BC	
Report Details:	COYLEKENNED	CONSULTING ENGIN	EERS:	1
Type: Connections Summary	GFSC			
Storm Phase: Phase	MONEENAG	EISHA ROAD,		COYLE
	GALWAY			Consulting

S11.000	FSR: 30 years: +20 %: 15 mins: Winter	Pipe	S20	Soakawa y 3	43.100	42.227	0.150	2.672	0.7	0.08	5.7	ОК
S12.000	FSR: 30 years: +20 %: 15 mins: Winter	Pipe	S21	Soakawa y 3	43.000	42.128	0.150	1.588	0.4	0.08	3.4	ОК
S13.001	FSR: 30 years: +20 %: 2160 mins: Winter	Pipe	S22	S23	42.950	41.429	0.029	168.718	0.6	0.01	2.3	ОК
S13.002	FSR: 30 years: +20 %: 2160 mins: Winter	Pipe	S23	S24	43.000	41.028	0.028	168.717	0.6	0.01	2.3	ОК
S13.003	FSR: 30 years: +20 %: 2160 mins: Winter	Pipe	S24	S25	42.400	40.728	0.027	168.717	0.7	0.01	2.3	ОК
S13.004	FSR: 30 years: +20 %: 2160 mins: Winter	Pipe	S25	OUTFAL L EXISTIN G SW	42.100	40.526	0.026	168.716	0.7	0.01	2.3	OK
S1.002	FSR: 30 years: +20 %: 15 mins: Winter	Pipe	S7	Soakawa y 1	42.950	41.882	0.309	51.942	2.3	0.37	98.0	ок

GCC SOCIAL HOUSING,: ST. JOSEPHS ROAD	Date: 02/05/2025						
PORTUMNA,	Designed by:	Checked by:	Approved By:				
CO. GALWAY	AC	ВС	ВС				
Report Details:	COYLEKENNEDY	COYLEKENNEDY CONSULTING ENGINEERS:					
Type: Connections Summary	GFSC	GFSC					
Storm Phase: Phase	MONEENAGI	MONEENAGEISHA ROAD,					
	GALWAY	GALWAY					

FSR: 100 years: Increase Rainfall (%): +20: Critical Storm Per Item: Rank By: Max. Flow

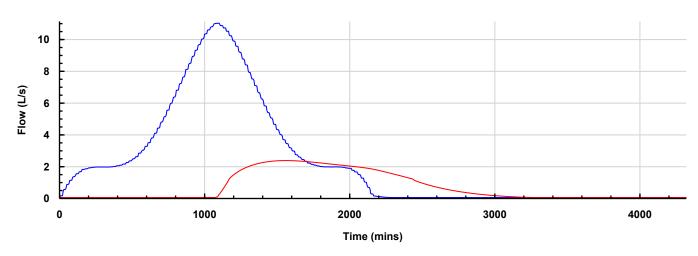
Connection	Storm Event	Connection Type	From	То	Upstrea m Cover	Max. US Water Elevatio n (m)	Max. Flow	Discharge Volume (m³)	Max. Velocity (m/s)	Flow / Capacity	Max. Flow (L/s)	Status
S1.000	FSR: 100 years: +20 %: 15 mins: Winter	Pipe	S1	S3	42.950	42.156	0.182	15.257	0.9	0.77	31.4	ОК
S2.000	FSR: 100 years: +20 %: 15 mins: Winter	Pipe	S2	S3	42.950	42.173	0.136	5.591	0.5	0.18	11.8	ОК
S1.001	FSR: 100 years: +20 %: 15 mins: Winter	Pipe	S3	S7	42.950	42.023	0.216	25.883	0.9	0.72	50.2	ОК
S3.000	FSR: 100 years: +20 %: 15 mins: Winter	Pipe	S4	S6	42.950	42.150	0.222	17.332	0.9	0.83	33.9	ОК
S4.000	FSR: 100 years: +20 %: 15 mins: Winter	Pipe	S5	S6	42.950	42.125	0.210	15.741	0.8	0.76	31.5	ОК
S3.001	FSR: 100 years: +20 %: 15 mins: Winter	Pipe	S6	S7	42.950	42.045	0.234	32.993	1.1	0.89	63.3	ОК
S5.000	FSR: 100 years: +20 %: 15 mins: Winter	Pipe	S8	S9	42.950	42.169	0.168	14.746	1.0	0.77	30.7	ОК
S5.001	FSR: 100 years: +20 %: 15 mins: Winter	Pipe	S9	S11	42.950	42.058	0.209	14.748	0.7	0.66	26.6	ОК
S6.000	FSR: 100 years: +20 %: 15 mins: Winter	Pipe	S10	S11	42.950	42.026	0.207	8.178	0.4	0.4	16.2	ОК
S5.002	FSR: 100 years: +20 %: 15 mins: Winter	Pipe	S11	S16	42.950	42.013	0.275	32.874	1.0	0.73	62.3	ОК
S7.000	FSR: 100 years: +20 %: 15 mins: Winter	Pipe	S12	S16	43.000	42.147	0.199	14.871	0.8	0.75	30.6	ОК
S8.000	FSR: 100 years: +20 %: 15 mins: Winter	Pipe	S13	S14	42.950	42.200	0.164	11.386	0.8	0.58	23.7	ок
S8.001	FSR: 100 years: +20 %: 15 mins: Winter	Pipe	S14	S15	42.950	42.157	0.205	16.829	0.9	0.84	33.4	ок
S8.002	FSR: 100 years: +20 %: 15 mins: Summer	Pipe	S15	S16	42.950	42.054	0.215	18.070	0.9	0.88	34.9	ОК

GCC SOCIAL HOUSING,:	Date:						
ST. JOSEPHS ROAD	02/05/2025	02/05/2025					
PORTUMNA,	Designed by:	Checked by:	Approved By:				
CO. GALWAY	AC	BC	BC				
Report Details:	COYLEKENNEDY	CONSULTING ENGIN	EERŠ:				
Type: Connections Summary	GFSC						
Storm Phase: Phase	MONEENAGE	MONEENAGEISHA ROAD,					
	GALWAY	GALWAY					

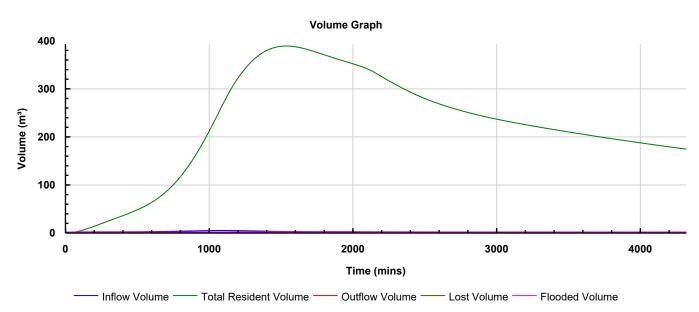
				GALWAT						Consulting Engineers			
S5.003	FSR: 100 years: +20 %: 15 mins: Winter	Pipe	S16	Soakawa y 1	42.950	42.004	0.300	66.815	2.6	0.76	123.1	Surch	
S13.000	FSR: 100 years: +20 %: 1440 mins: Winter	Pipe	Soakaw ay 1	S22	42.256	42.018	0.031	217.900	0.7	0.01	3.0	ОК	
S9.000	FSR: 100 years: +20 %: 15 mins: Winter	Pipe	S17	S19	43.300	42.494	0.075	6.439	1.5	0.62	13.5	ОК	
S10.000	FSR: 100 years: +20 %: 15 mins: Winter	Pipe	S18	S19	43.300	42.496	0.076	5.891	1.4	0.65	12.3	ОК	
S9.001	FSR: 100 years: +20 %: 15 mins: Winter	Pipe	S19	Soakawa y 2	43.300	42.256	0.150	12.317	1.6	0.3	25.6	ОК	
S11.000	FSR: 100 years: +20 %: 15 mins: Winter	Pipe	S20	Soakawa y 3	43.100	42.232	0.150	3.481	0.7	0.11	7.4	ОК	
S12.000	FSR: 100 years: +20 %: 15 mins: Winter	Pipe	S21	Soakawa y 3	43.000	42.133	0.150	2.067	0.4	0.11	4.4	ОК	
S13.001	FSR: 100 years: +20 %: 1440 mins: Winter	Pipe	S22	S23	42.950	41.432	0.032	217.895	0.7	0.02	3.0	ОК	
S13.002	FSR: 100 years: +20 %: 1440 mins: Winter	Pipe	S23	S24	43.000	41.032	0.032	217.888	0.7	0.01	3.0	ОК	
S13.003	FSR: 100 years: +20 %: 1440 mins: Winter	Pipe	S24	S25	42.400	40.732	0.031	217.882	0.7	0.01	3.0	ОК	
S13.004	FSR: 100 years: +20 %: 1440 mins: Winter	Pipe	S25	OUTFAL L EXISTIN G SW	42.100	40.529	0.029	217.877	0.8	0.01	3.0	ОК	
S1.002	FSR: 100 years: +20 %: 15 mins: Winter	Pipe	S7	Soakawa y 1	42.950	41.963	0.375	66.900	2.4	0.47	126.4	ОК	

GCC SOCIAL HOUSING,:	Date:			
ST. JOSEPHS ROAD	02/05/2025			
PORTUMNA,	Designed by:	Checked by:	Approved By:	
CO. GALWAY	AC	BC	BC	
Report Details:	COYLEKENNEDY	CONSULTING ENGIN	EERS:	
Type: Phase Management	GFSC			
Storm Phase: Phase	MONEENAGEISHA ROAD,			COYLE KENNEDY
	GALWAY			Consulting Engineers

Phase


FSR: 30 years: Increase Rainfall (%): +20: 2160 mins: Winter

Tables


Name	Max. Inflow (L/s)	Total Inflow Volume (m³)	Max. Outflow (L/s)	Total Outflow Volume (m³)
OUTFALL EXISTING SW			2.3	168.716
TOTAL	11.0	567.049	2.3	168.716

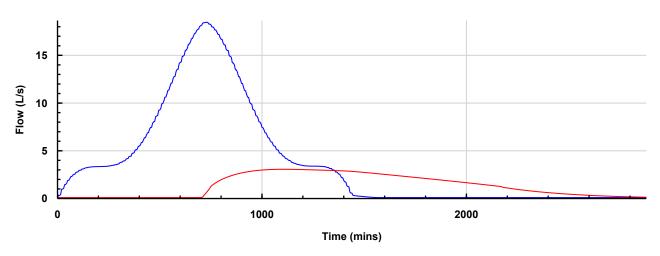
Graphs

Flow Graph

Total Inflow Total Outflow

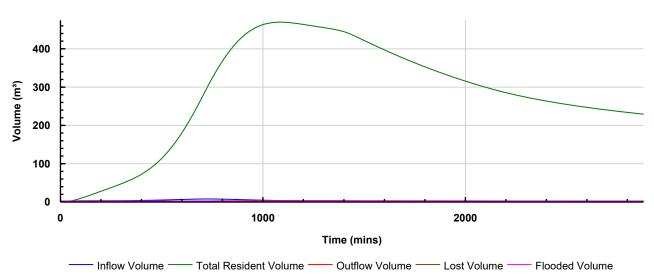
GCC SOCIAL HOUSING,:	Date:			
ST. JOSEPHS ROAD	02/05/2025			
PORTUMNA,	Designed by:	Checked by:	Approved By:	
CO. GALWAY	AC	BC	BC	
Report Details:	COYLEKENNEDY	CONSULTING ENGIN	EERS:	
Type: Phase Management	GFSC			
Storm Phase: Phase	MONEENAGEISHA ROAD,			COYLE KENNEDY
	GAI WAY			Consulting Engineers

Phase


FSR: 100 years: Increase Rainfall (%): +20: 1440 mins: Winter

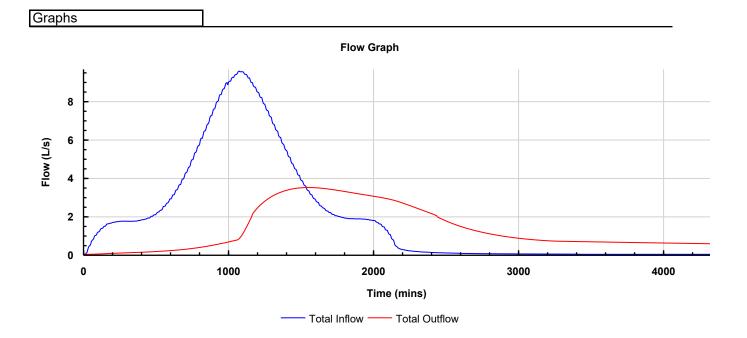
Tables

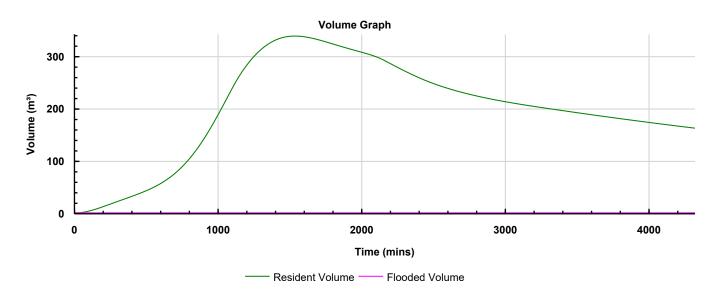
Name	Max. Inflow (L/s)	Total Inflow Volume (m³)	Max. Outflow (L/s)	Total Outflow Volume (m³)
OUTFALL EXISTING SW			3.0	217.877
TOTAL	18.5	636.914	3.0	217.877


Graphs

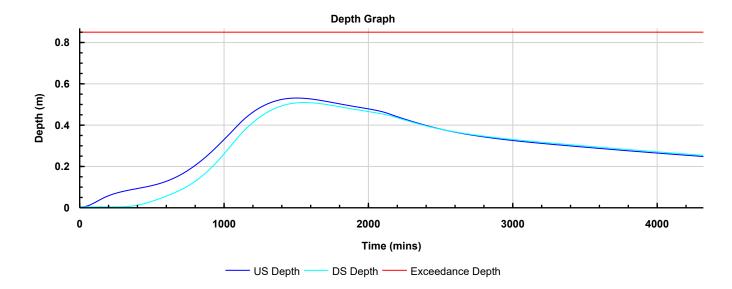
Flow Graph

Total Inflow Total Outflow

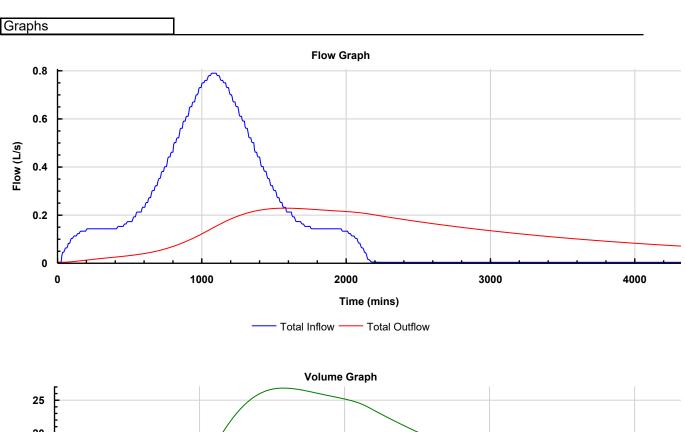

Volume Graph

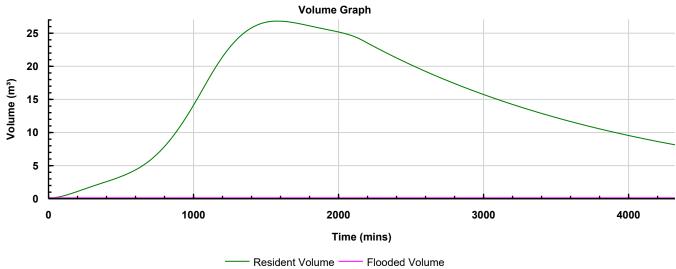


GCC SOCIAL HOUSING,: ST. JOSEPHS ROAD	Date: 02/05/2025			
PORTUMNA,	Designed by:	Checked by:	Approved By:	
CO. GALWAY	AC	ВС	ВС	
Report Details:	COYLEKENNEDY	CONSULTING ENGIN	IEERŠ:	
Type: Stormwater Control Results	GFSC			
Storm Phase: Phase	MONEENAGEISHA ROAD,			COYLE KENNEDY
	GALWAY		Consulting Engineers	

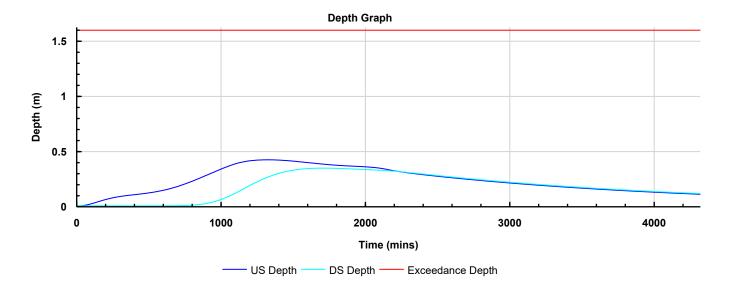


Soakaway 1 Critical by Return Period: FSR: 30 years: Increase Rainfall (%): +20: 2160 mins: Winter

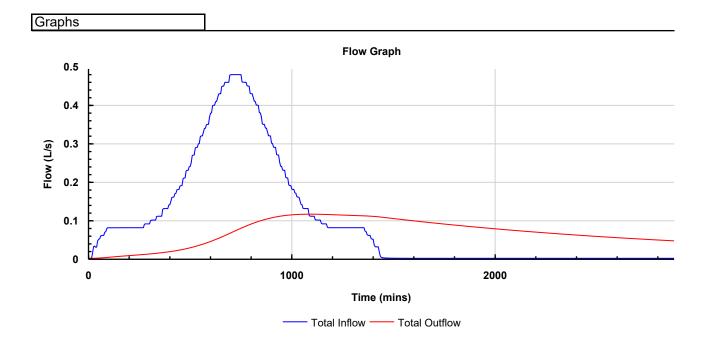

GCC SOCIAL HOUSING,: ST. JOSEPHS ROAD	Date: 02/05/2025			
PORTUMNA,	Designed by:	Checked by:	Approved By:	
CO. GALWAY	AC	ВС	ВС	
Report Details:	COYLEKENNEDY	CONSULTING ENGIN	IEERS:	
Type: Stormwater Control Results	GFSC			
Storm Phase: Phase	MONEENAGEISHA ROAD,			COYLE KENNEDY
	GALWAY			Consulting Engineers

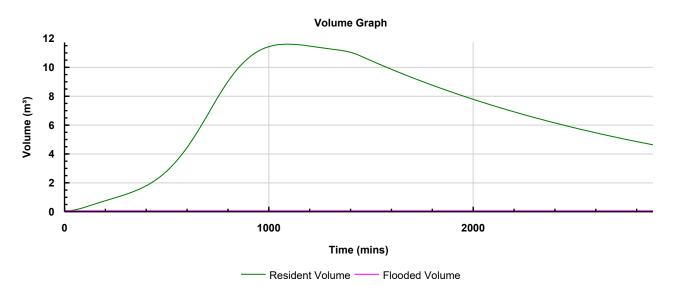


GCC SOCIAL HOUSING,: ST. JOSEPHS ROAD	Date: 02/05/2025			
PORTUMNA,	Designed by:	Checked by:	Approved By:	
CO. GALWAY	AC	ВС	ВС	
Report Details:	COYLEKENNEDY	CONSULTING ENGIN	IEERŠ:	
Type: Stormwater Control Results	GFSC			
Storm Phase: Phase	MONEENAGEISHA ROAD,			COYLE KENNEDY
	GALWAY		Consulting Engineers	

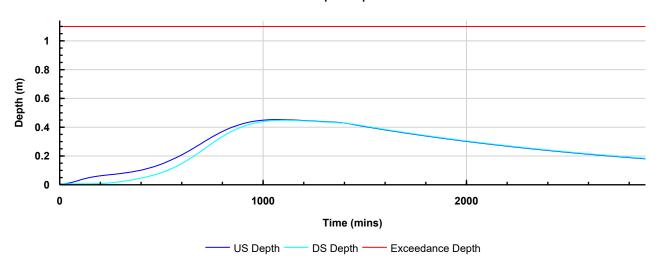


Soakaway 2 Critical by Return Period: FSR: 30 years: Increase Rainfall (%): +20: 2160 mins: Winter

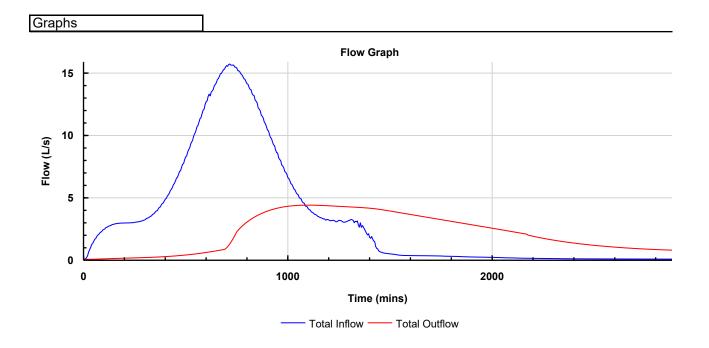

GCC SOCIAL HOUSING,: ST. JOSEPHS ROAD	Date: 02/05/2025			
PORTUMNA,	Designed by:	Checked by:	Approved By:	
CO. GALWAY	AC	ВС	ВС	
Report Details:	COYLEKENNEDY	CONSULTING ENGIN	IEERS:	
Type: Stormwater Control Results	GFSC			
Storm Phase: Phase	MONEENAGEISHA ROAD,			COYLE KENNEDY
	GALWAY			Consulting Engineers

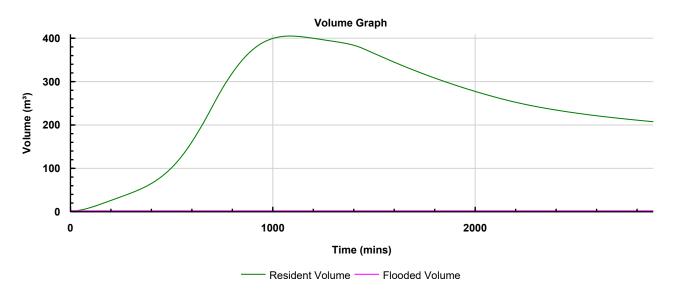


GCC SOCIAL HOUSING,: ST. JOSEPHS ROAD	Date: 02/05/2025			
PORTUMNA,	Designed by:	Checked by:	Approved By:	
CO. GALWAY	AC	ВС	ВС	
Report Details:	COYLEKENNEDY	CONSULTING ENGIN	IEERŠ:	
Type: Stormwater Control Results	GFSC			
Storm Phase: Phase	MONEENAGEISHA ROAD,			COYLE KENNEDY
	GALWAY		Consulting Engineers	

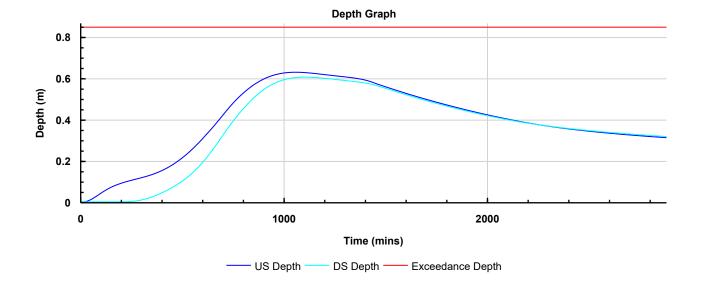

Soakaway 3 Critical by Return Period: FSR: 30 years: Increase Rainfall (%): +20: 1440 mins: Winter

GCC SOCIAL HOUSING,: ST. JOSEPHS ROAD	Date: 02/05/2025			
PORTUMNA,	Designed by:	Checked by:	Approved By:	
CO. GALWAY	AC	ВС	ВС	
Report Details:	COYLEKENNEDY	CONSULTING ENGIN	EERS:	
Type: Stormwater Control Results	GFSC			
Storm Phase: Phase	MONEENAGEISHA ROAD,			COYLE KENNEDY
	GALWAY		Consulting Engineers	

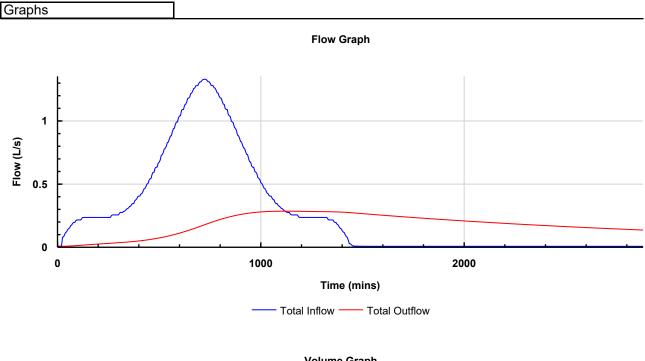

Depth Graph

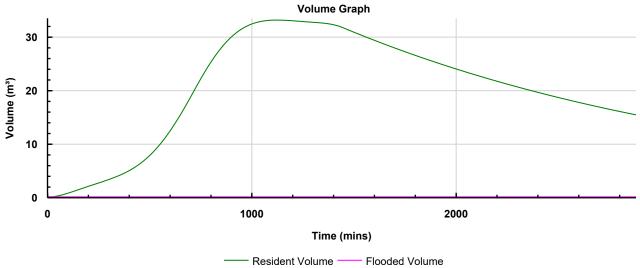


GCC SOCIAL HOUSING,: ST. JOSEPHS ROAD	Date: 02/05/2025			
PORTUMNA,	Designed by:	Checked by:	Approved By:	
CO. GALWAY	AC	ВС	ВС	
Report Details:	COYLEKENNEDY	CONSULTING ENGIN	IEERŠ:	
Type: Stormwater Control Results	GFSC			
Storm Phase: Phase	MONEENAGEISHA ROAD,			COYLE KENNEDY
	GALWAY		Consulting Engineers	

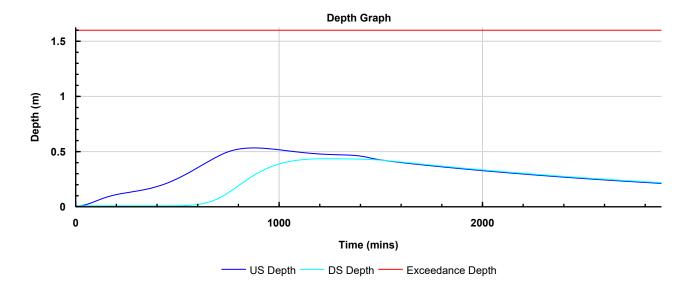


Soakaway 1 Critical by Return Period: FSR: 100 years: Increase Rainfall (%): +20: 1440 mins: Winter

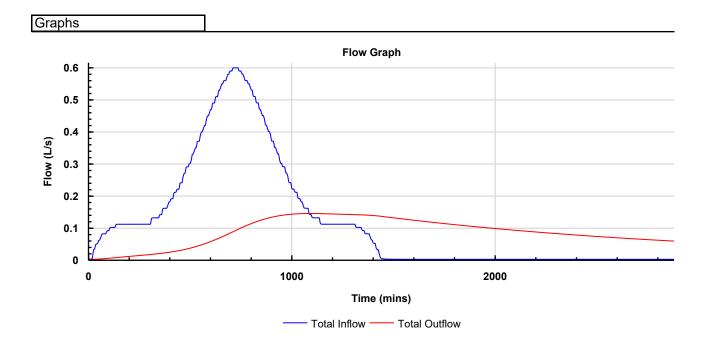

GCC SOCIAL HOUSING,: ST. JOSEPHS ROAD	Date: 02/05/2025			
PORTUMNA,	Designed by:	Checked by:	Approved By:	
CO. GALWAY	AC	ВС	ВС	
Report Details:	COYLEKENNEDY	CONSULTING ENGIN	IEERS:	
Type: Stormwater Control Results	GFSC			
Storm Phase: Phase	MONEENAGEISHA ROAD,		COYLE KENNEDY	
	GALWAY			Consulting Engineers

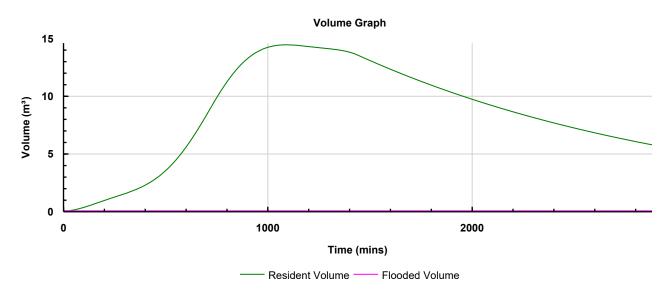


GCC SOCIAL HOUSING,:	Date:			
ST. JOSEPHS ROAD	02/05/2025			
PORTUMNA,	Designed by:	Checked by:	Approved By:	
CO. GALWAY	AC	BC	BC	
Report Details:	COYLEKENNEDY	CONSULTING ENGIN	EERS:	
Type: Stormwater Control Results	GFSC			
Storm Phase: Phase	MONEENAGE	EISHA ROAD,		COYLE KENNEDY
	GALWAY			Consulting Engineers

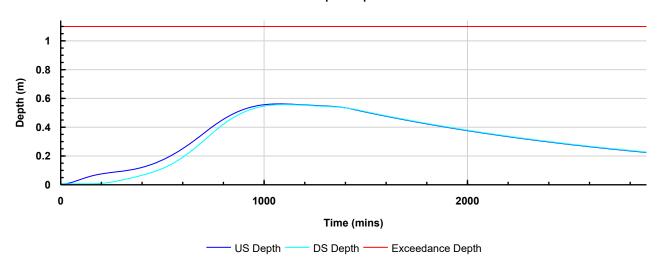


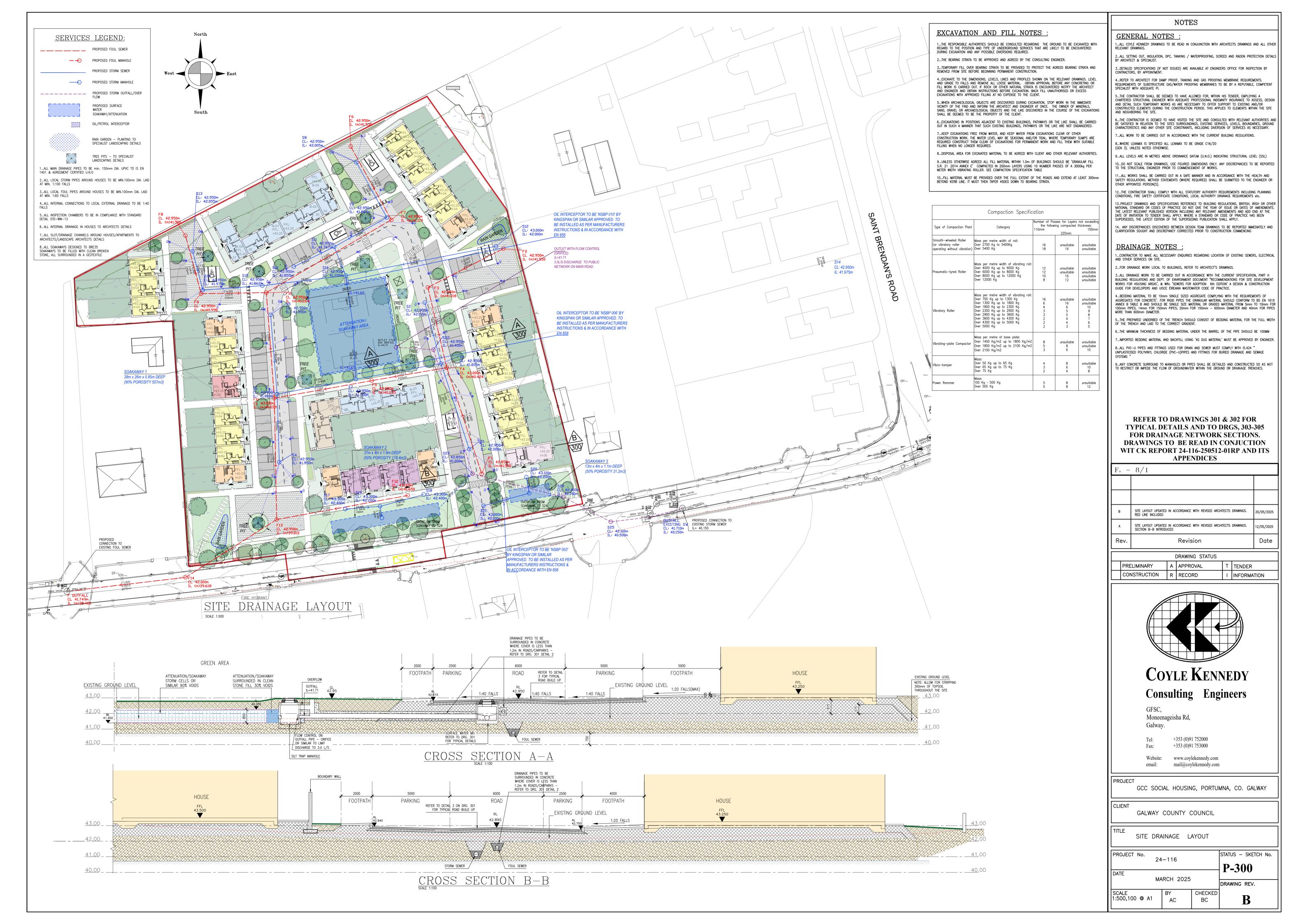
Soakaway 2 Critical by Return Period: FSR: 100 years: Increase Rainfall (%): +20: 1440 mins: Winter

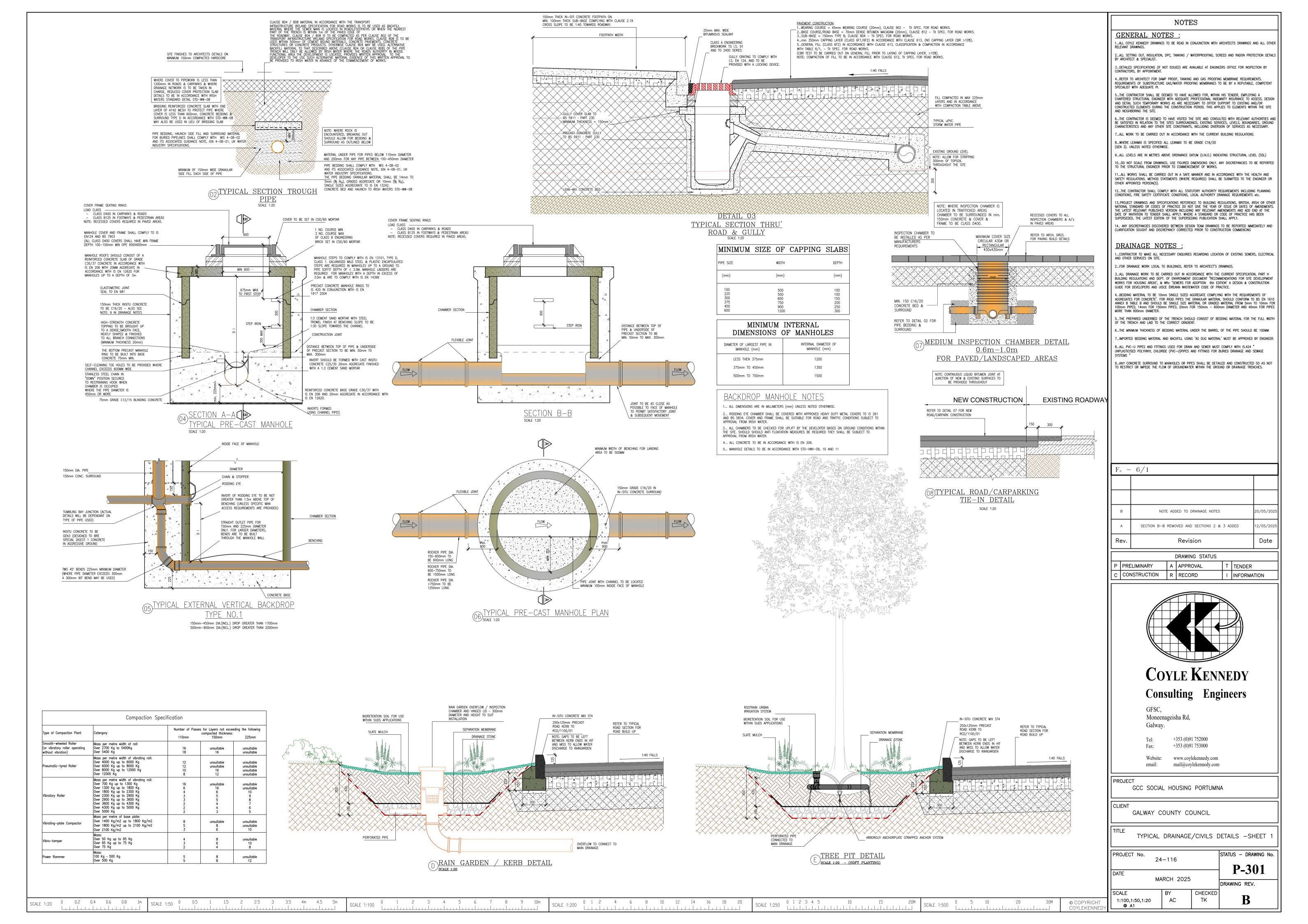

GCC SOCIAL HOUSING,:	Date:			
ST. JOSEPHS ROAD	02/05/2025			
PORTUMNA,	Designed by:	Checked by:	Approved By:	
CO. GALWAY	AC	ВС	BC	
Report Details:	COYLEKENNEDY	CONSULTING ENGIN	IEERS:	
Type: Stormwater Control Results	GFSC			
Storm Phase: Phase	MONEENAGI	EISHA ROAD,		COYLE KENNEDY
	GALWAY			Consulting Engineers

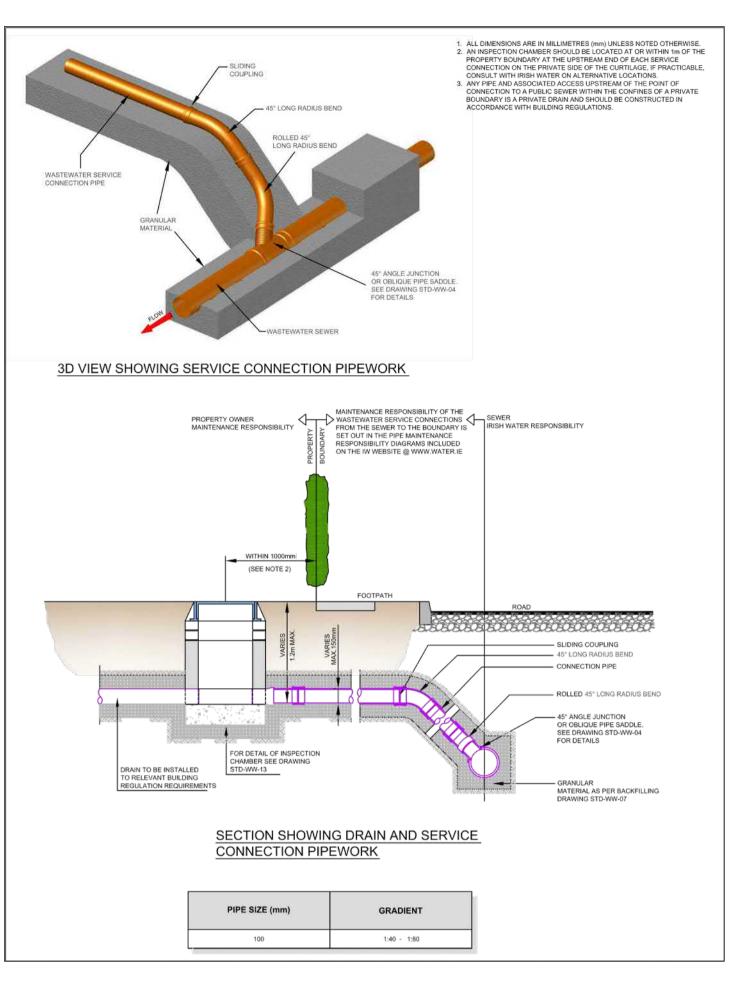


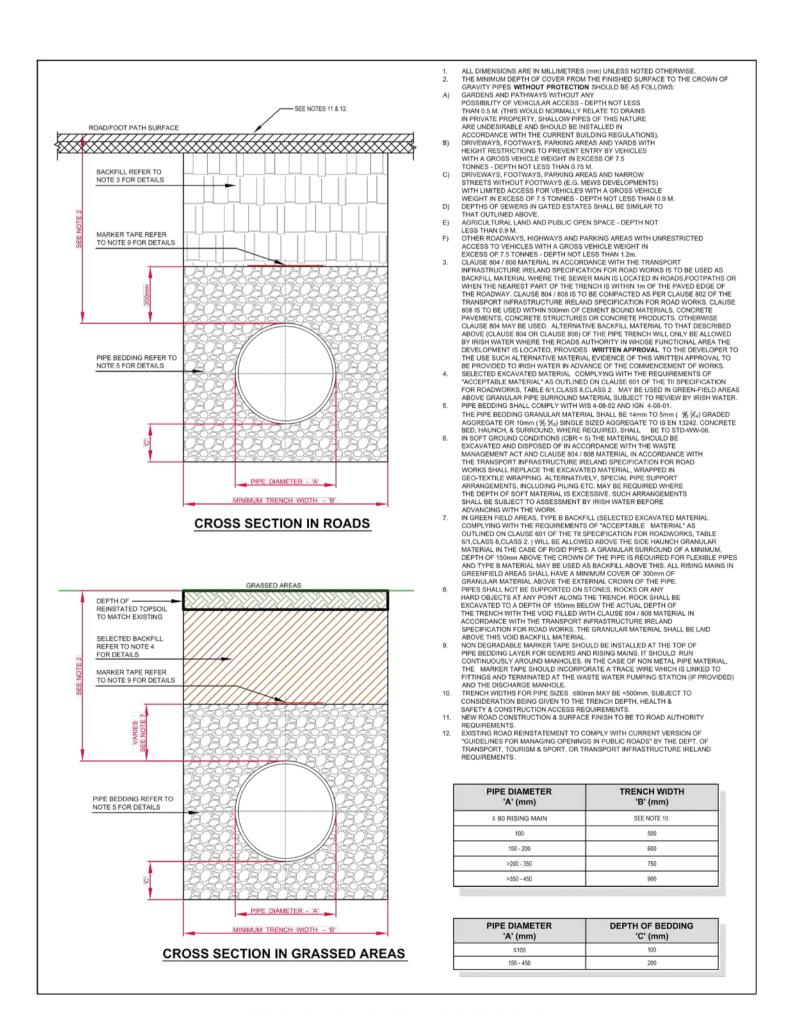
GCC SOCIAL HOUSING,: ST. JOSEPHS ROAD	Date: 02/05/2025			
PORTUMNA,	Designed by:	Checked by:	Approved By:	
CO. GALWAY	AC	ВС	ВС	
Report Details:	COYLEKENNEDY	CONSULTING ENGIN	IEERŠ:	
Type: Stormwater Control Results	GFSC			
Storm Phase: Phase	MONEENAGE	EISHA ROAD,		COYLE KENNEDY
	GALWAY			Consulting Engineers

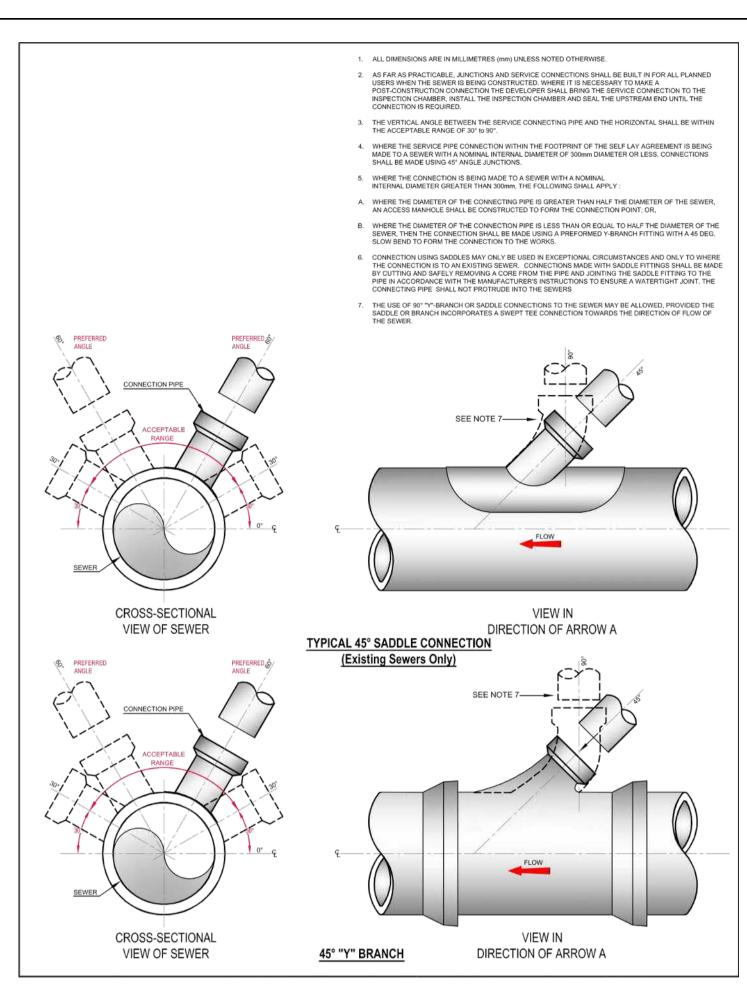

Soakaway 3 Critical by Return Period: FSR: 100 years: Increase Rainfall (%): +20: 1440 mins: Winter

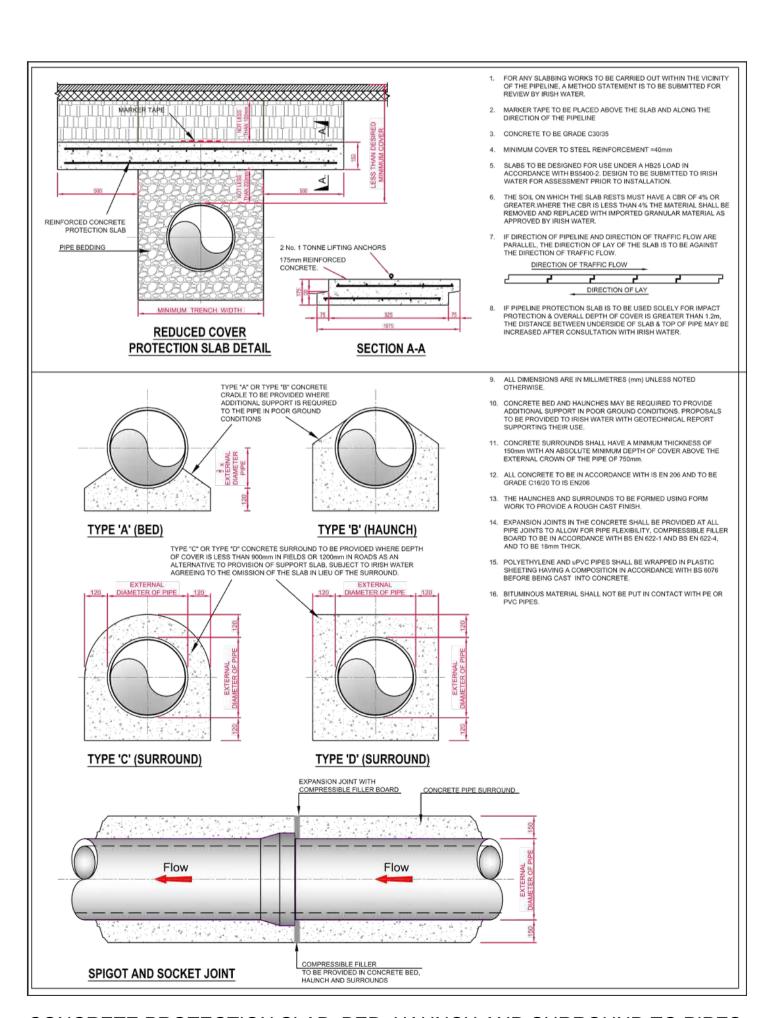

GCC SOCIAL HOUSING,: ST. JOSEPHS ROAD	Date: 02/05/2025			
PORTUMNA,	Designed by:	Checked by:	Approved By:	
CO. GALWAY	AC	ВС	BC	
Report Details:	COYLEKENNEDY	CONSULTING ENGIN	IEERŠ:	
Type: Stormwater Control Results	GFSC			
Storm Phase: Phase	MONEENAGI	EISHA ROAD,		COYLE KENNEDY
	GALWAY			Consulting Engineers

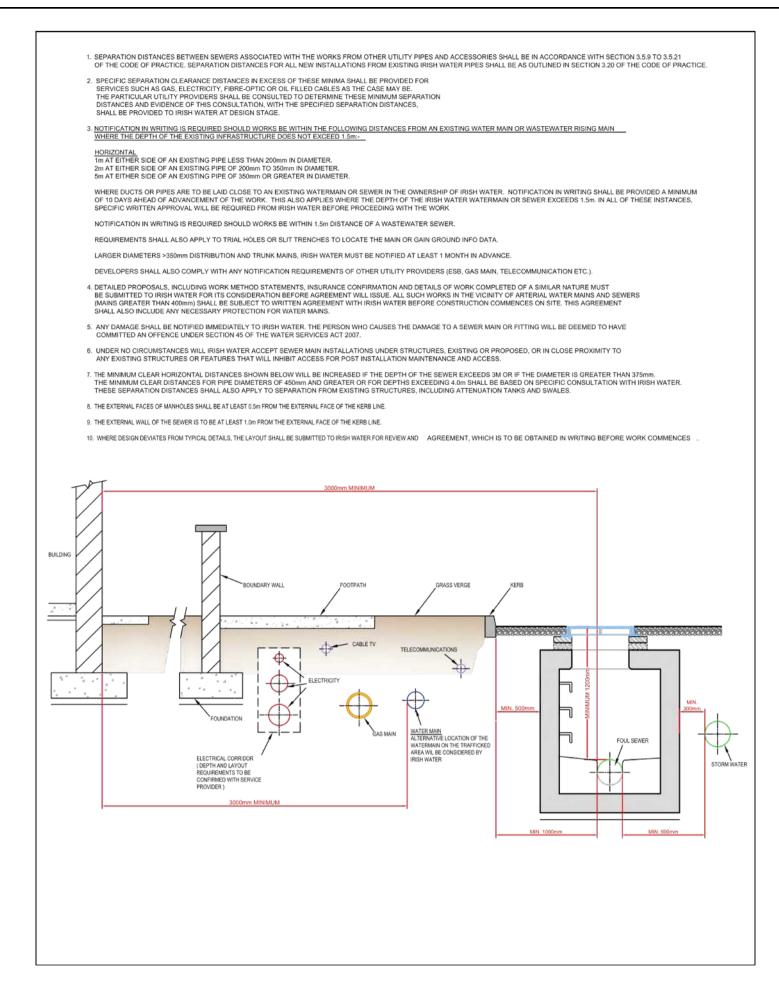

Depth Graph

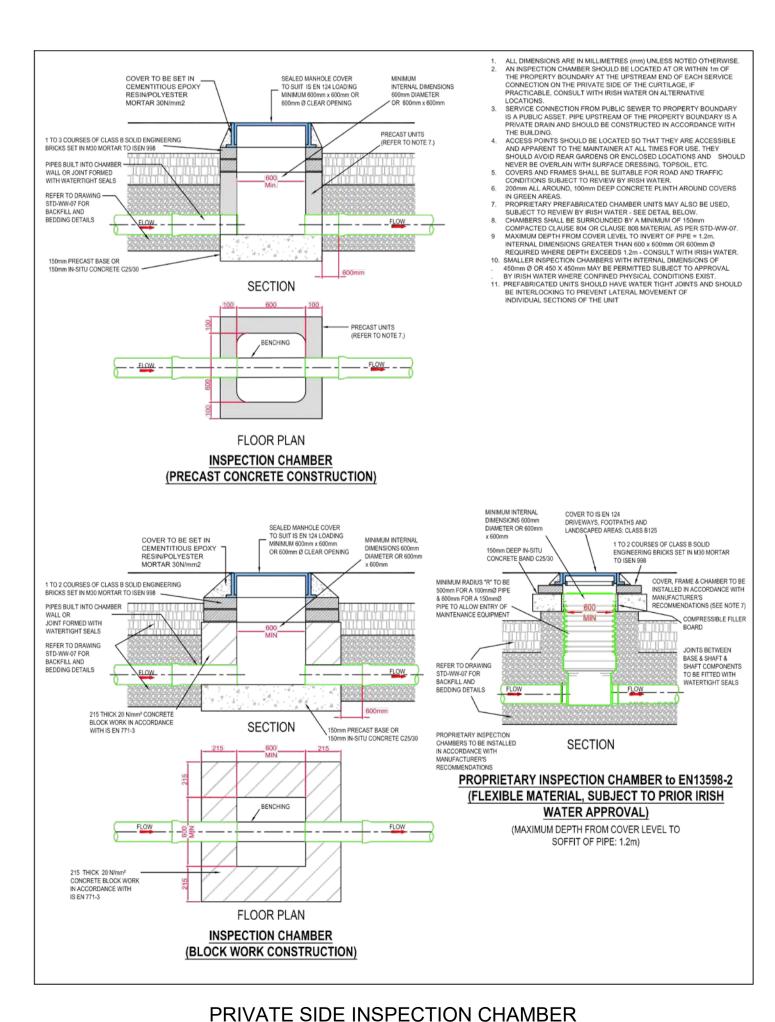



Appendix 3 Drawings, Details & Calculations




DRAIN & SERVICE CONNECTION PIPEWORK EXTRACT FROM UISCE ÉIREANN'S STD-WW-03


TRENCH BACKFILL & BEDDING EXTRACT FROM UISCE ÉIREANN'S STD-WW-07


TYPICAL SEWER/SERVICE PIPE CONNECTION EXTRACT FROM UISCE ÉIREANN'S STD-WW-04

CONCRETE PROTECTION SLAB, BED, HAUNCH AND SURROUND TO PIPES EXTRACT FROM UISCE ÉIREANN'S STD-WW-08

TYPICAL SERVICE LAYOUT INDICATING SEPARATION DISTANCES EXTRACT FROM UISCE ÉIREANN'S STD-WW-05

EXTRACT FROM UISCE ÉIREANN'S STD-WW-05

NOTES

GENERAL NOTES

1...ALL COYLE KENNEDY DRAWINGS TO BE READ IN CONJUNCTION WITH ARCHITECTS DRAWINGS AND ALL OTHER RELEVANT DRAWINGS.

2...ALL SETTING OUT, INSULATION, DPC, TANKING / WATERPROOFING, SCREED AND RADON PROTECTION DETAILS BY ARCHITECT & SPECIALIST. 3...DETAILED SPECIFICATIONS (IF NOT ISSUED) ARE AVAILABLE AT ENGINEERS OFFICE FOR INSPECTION BY CONTRACTORS, BY APPOINTMENT.

4...REFER TO ARCHITECT FOR DAMP PROOF, TANKING AND GAS PROOFING MEMBRANE REQUIREMENTS. REQUIREMENTS OF SUBSTRUCTURE GAS/WATER PROOFING MEMBRANES TO BE BY A REPUTABLE, COMPETENT

5...THE CONTRACTOR SHALL BE DEEMED TO HAVE ALLOWED FOR, WITHIN HIS TENDER, EMPLOYING A CHARTERED STRUCTURAL ENGINEER WITH ADEQUATE PROFESSIONAL INDEMNITY INSURANCE TO ASSESS, DESIGN AND DETAIL SUCH TEMPORARY WORKS AS ARE NECESSARY TO DEFER SUPPORT TO EXISTING AND/OR ONSTRUCTED ELEMENTS DURING THE CONSTRUCTION PERIOD. THIS APPLIES TO ELEMENTS WITHIN THE SITE AND NEIGHBORING THE SITE.

6...THE CONTRACTOR IS DEEMED TO HAVE VISITED THE SITE AND CONSULTED WITH RELEVANT AUTHORITIES AN BE SATISFIED IN RELATION TO THE SITES SURROUNDINGS, EXISTING SERVICES, LEVELS, BOUNDARIES, GROUND CHARACTERISTICS AND ANY OTHER SITE CONSTRAINTS, INCLUDING DIVERSION OF SERVICES AS NECESSARY.

7...ALL WORK TO BE CARRIED OUT IN ACCORDANCE WITH THE CURRENT BUILDING REGULATIONS. 8...WHERE LEANMIX IS SPECIFIED ALL LEANMIX TO BE GRADE C16/20 (GEN 3). UNLESS NOTED OTHERWISE.

9...ALL LEVELS ARE IN METRES ABOVE ORDINANCE DATUM (U.N.O.) INDICATING STRUCTURAL LEVEL (SSL) 10...DO NOT SCALE FROM DRAWINGS, USE FIGURED DIMENSIONS ONLY. ANY DISCREPANCIES TO BE REPORTED TO THE STRUCTURAL ENGINEER PRIOR TO COMMENCEMENT OF WORKS.

1...ALL WORKS SHALL BE CARRIED OUT IN A SAFE MANNER AND IN ACCORDANCE WITH THE HEALTH AND SAFETY REGULATIONS. METHOD STATEMENTS (WHERE REQUIRED) SHALL BE SUBMITTED TO THE ENGINEER OR

2...THE CONTRACTOR SHALL COMPLY WITH ALL STATUTORY AUTHORITY REQUIREMENTS INCLUDING PLANNING CONDITIONS, FIRE SAFETY CERTIFICATE CONDITIONS, LOCAL AUTHORITY DRAINAGE REQUIREMENTS etc. 3...PROJECT DRAWINGS AND SPECIFICATIONS REFERENCE TO BUILDING REGULATIONS, BRITISH, IRISH OR OTHE NATIONAL STANDARD OR CODES OF PRACTICE DO NOT GIVE THE YEAR OF ISSUE OR DATES OF AMENDMENTS THE LATEST RELEVANT PUBLISHED VERSION INCLUDING ANY RELEVANT AMENDMENTS AND ADD END AT THE DATE OF INVITATION TO TENDER SHALL APPLY. WHERE A STANDARD OR CODE OF PRACTICE HAS BEEN

14.. ANY DISCREPANCIES DISCOVERED BETWEEN DESIGN TEAM DRAWINGS TO BE REPORTED IMMEDIATELY AND CLARIFICATION SOUGHT AND DISCREPANCY CORRECTED PRIOR TO CONSTRUCTION COMMENCING

SUPERSEDED. THE LATEST EDITION OF THE SUPERSEDING PUBLICATION SHALL APPLY.

DRAINAGE NOTES

MORE THAN 600mm DIAMETER.

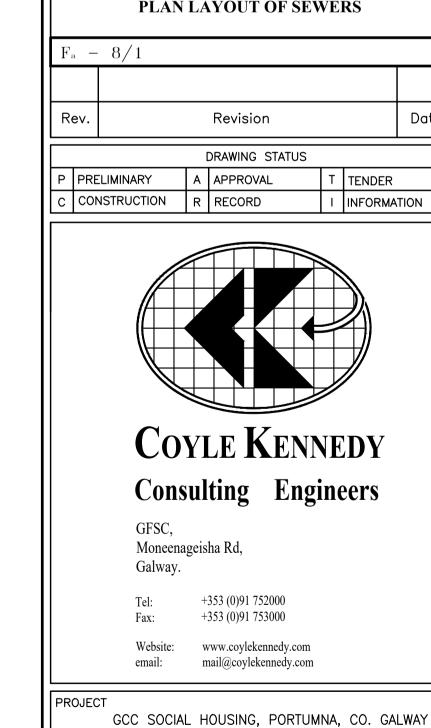
OTHER APPOINTED PERSON(S).

1...CONTRACTOR TO MAKE ALL NECESSARY ENQUIRIES REGARDING LOCATION OF EXISTING SEWERS, ELECTRICAL

2...FOR DRAINAGE WORK LOCAL TO BUILDINGS, REFER TO ARCHITECT'S DRAWINGS. 3...ALL DRAINAGE WORK TO BE CARRIED OUT IN ACCORDANCE WITH THE CURRENT SPECIFICATION, PART H BUILDING REGULATIONS AND DEPT. OF ENVIRONMENT DOCUMENT "RECOMMENDATIONS FOR SITE DEVELOPMENT

GUIDE FOR DEVELOPERS AND UISCE ÉIREANN WASTEWATER CODE OF PRACTICE. 4...BEDDING MATERIAL TO BE 10mm SINGLE SIZED AGGREGATE COMPLYING WITH THE REQUIREMENTS OF AGGREGATES FOR CONCRETE'. FOR RIGID PIPES THE GRANULAR MATERIAL SHOULD CONFORM TO BS EN 1610 ANNEX B TABLE B AND SHOULD BE SINGLE SIZE MATERIAL OR GRADED MATERIAL FROM 5mm TO 10mm FOI

WORKS FOR HOUSING AREAS', & WRc 'SEWERS FOR ADOPTION 6th EDITION' A DESIGN & CONSTRUCTION


5...THE PREPARED UNDERBED OF THE TRENCH SHOULD CONSIST OF BEDDING MATERIAL FOR THE FULL WIDTH OF THE TRENCH AND LAID TO THE CORRECT GRADIENT

100mm PIPES; 14mm FOR 150mm PIPES; 20mm FOR 150mm - 600mm DIAMETER AND 40mm FOR PIPES

6...THE MINIMUM THICKNESS OF BEDDING MATERIAL UNDER THE BARREL OF THE PIPE SHOULD BE 100MM 7...IMPORTED BEDDING MATERIAL AND BACKFILL USING 'AS DUG MATERIAL' MUST BE APPROVED BY ENGINEER. 8...ALL PVC-U PIPES AND FITTINGS USED FOR DRAIN AND SEWER MUST COMPLY WITH IS.424 " UNPLASTICISED POLYVINYL CHLORIDE (PVC-U)PIPES AND FITTINGS FOR BURIED DRAINAGE AND SEWAGE

REFER TO DRAWING 300 FOR

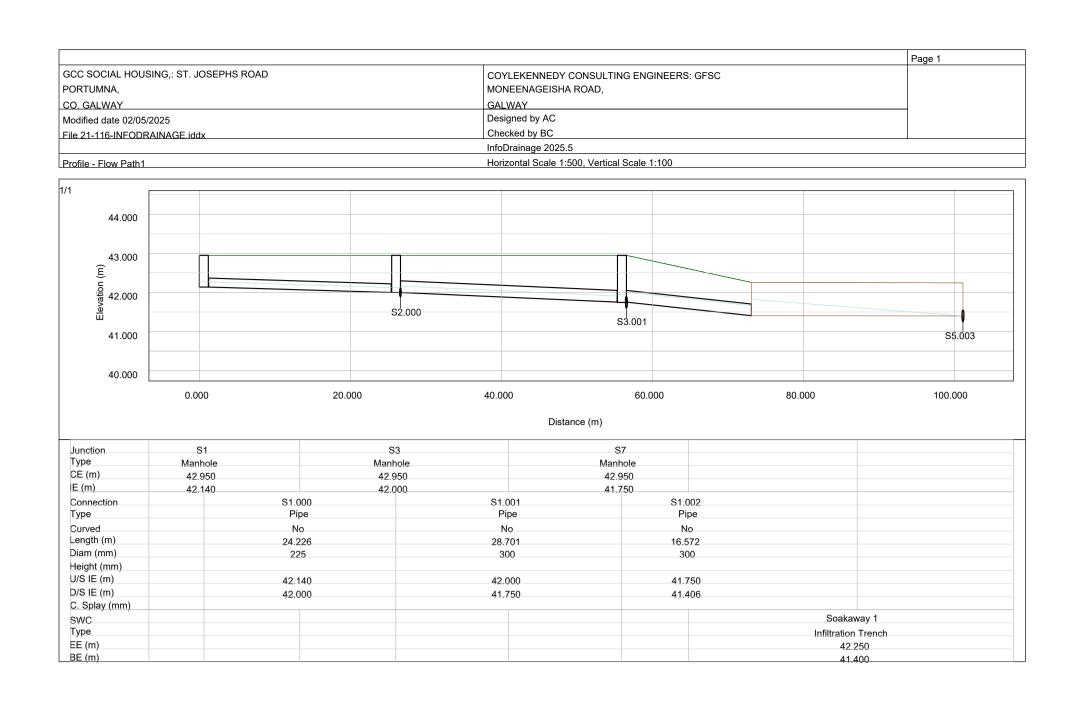
Date

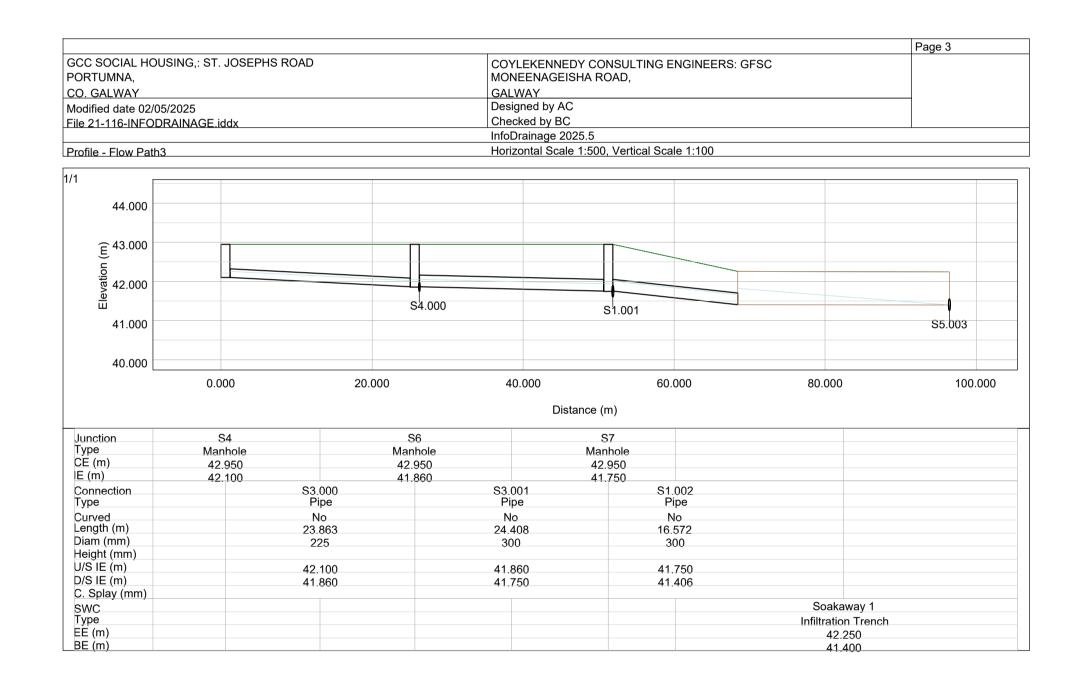
CLIENT

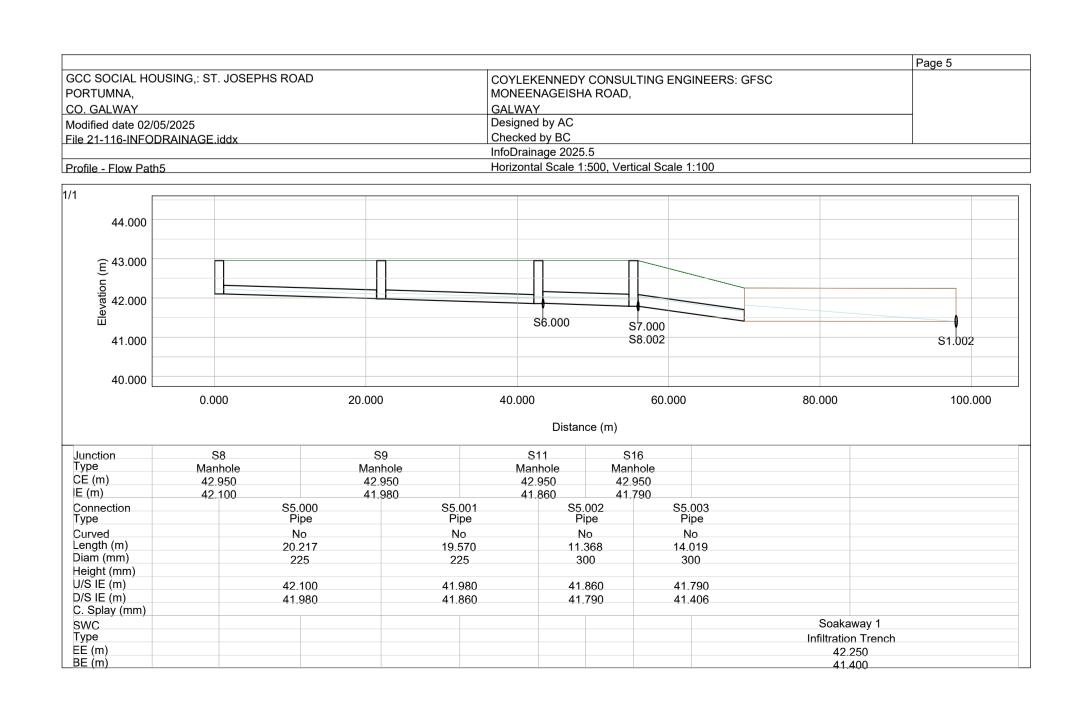
TITLE

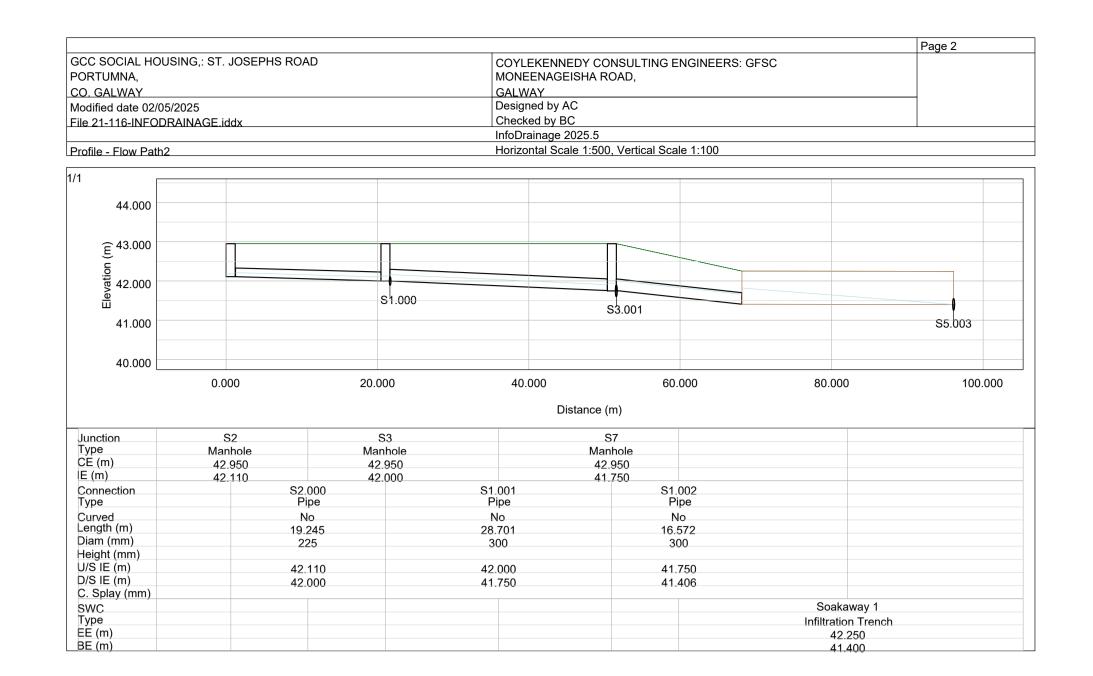
DATE

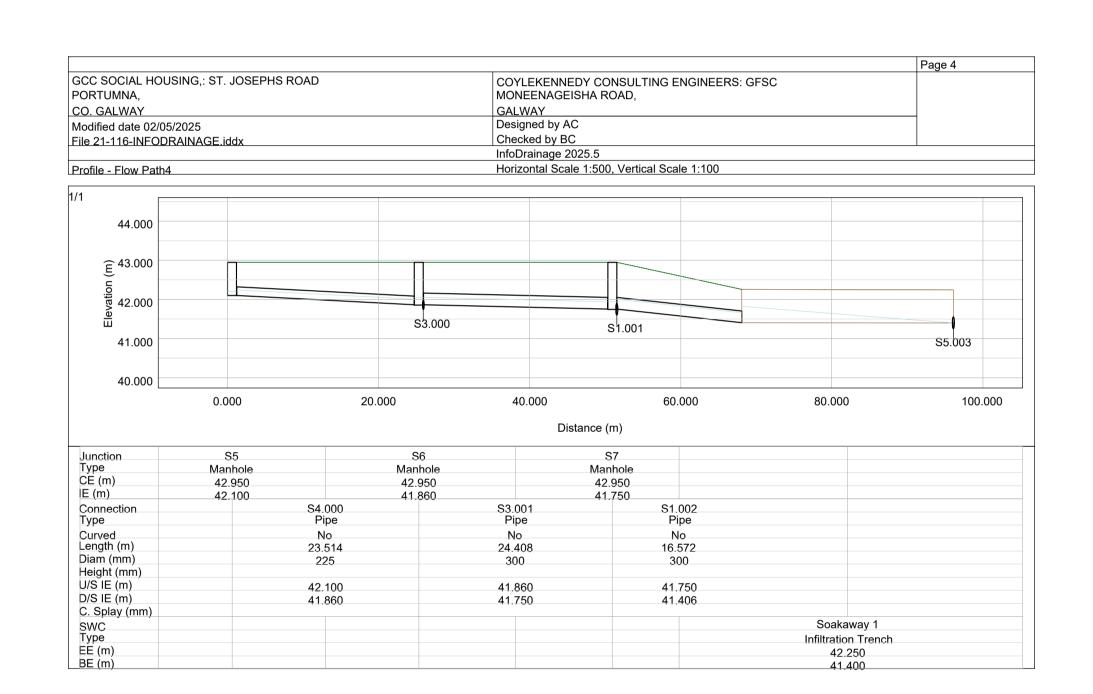
© COPYRIGH


PROJECT No.


24-116 P-302 MARCH 2025 DRAWING REV. SCALE CHECKED AC BC N.T.S @ A1


TYPICAL DRAINAGE/CIVILS DETAILS -SHEET 2


STATUS - DRAWING No.


GALWAY COUNTY COUNCIL

						Page 6
SCC SOCIAL HOUSING,: ST.	JOSEPHS ROAD		COYLER	ENNEDY CONSULTING ENGI	NEERS: GFSC	
PORTUMNA,			MONEE	NAGEISHA ROAD,		
CO. GALWAY			GALWA'	<i>(</i>		
Modified date 02/05/2025				d by AC		
File 21-116-INFODRAINAGE.iddx				by BC		
			InfoDrair	age 2025.5		
rofile - Flow Path6			Horizont	al Scale 1:500, Vertical Scale 1:	100	
1						
44.000						
- 42 000						
£ 43.000						
LO .						
च्च 42.000						
(m) 43.000 Hevation 42.000		05.00				
		S5.00		7.000		
41.000			S	8.002	S1	.002
40.000						
-20.000	0.000	20	.000	40.000	60.000	80.000
				Distance (m)		
Junction Type	S10 Manhole	S11 Manhole	S1 Manl			
CE (m)	42.950	42.950	42.9			
E (m)	42.950 42.050	41.860	41.7			
Connection	S6.	000	S5.002	S5.003		
Type	Pi	pe	Pipe	Pipe		
Curved	N		No	No		
Length (m)	14.3		11.368	14.019		
Diam (mm) Height (mm)	22	25	300	300		
Height (mm) U/S IE (m)	42.	250	41.860	41.790		
D/S IE (III)	42.1		41.860 41.790	41.790		
C. Splay (mm)	41.0	300	41.790	41.400		
SWC					Soakaway 1	
					Infiltration Trench	
Туре						
Type EE (m) BE (m)					42.250	

GENERAL NOTES

1...ALL COYLE KENNEDY DRAWINGS TO BE READ IN CONJUNCTION WITH ARCHITECTS DRAWINGS AND ALL OTHER RELEVANT DRAWINGS.

2...ALL SETTING OUT, INSULATION, DPC, TANKING / WATERPROOFING, SCREED AND RADON PROTECTION DETAILS

BY ARCHITECT & SPECIALIST 3...DETAILED SPECIFICATIONS (IF NOT ISSUED) ARE AVAILABLE AT ENGINEERS OFFICE FOR INSPECTION BY

4...REFER TO ARCHITECT FOR DAMP PROOF, TANKING AND GAS PROOFING MEMBRANE REQUIREMENTS. REQUIREMENTS OF SUBSTRUCTURE GAS/WATER PROOFING MEMBRANES TO BE BY A REPUTABLE, COMPETENT

SPECIALIST WITH ADEQUATE PI. 5...THE CONTRACTOR SHALL BE DEEMED TO HAVE ALLOWED FOR, WITHIN HIS TENDER, EMPLOYING A CHARTERED STRUCTURAL ENGINEER WITH ADEQUATE PROFESSIONAL INDEMNITY INSURANCE TO ASSESS, DESIGN AND DETAIL SUCH TEMPORARY WORKS AS ARE NECESSARY TO OFFER SUPPORT TO EXISTING AND/OR

CONSTRUCTED ELEMENTS DURING THE CONSTRUCTION PERIOD. THIS APPLIES TO ELEMENTS WITHIN THE SITE AND NEIGHBORING THE SITE.

6...THE CONTRACTOR IS DEEMED TO HAVE VISITED THE SITE AND CONSULTED WITH RELEVANT AUTHORITIES AND BE SATISFIED IN RELATION TO THE SITES SURROUNDINGS, EXISTING SERVICES, LEVELS, BOUNDARIES, GROUND CHARACTERISTICS AND ANY OTHER SITE CONSTRAINTS, INCLUDING DIVERSION OF SERVICES AS NECESSARY.

7...ALL WORK TO BE CARRIED OUT IN ACCORDANCE WITH THE CURRENT BUILDING REGULATIONS. 8...WHERE LEANMIX IS SPECIFIED ALL LEANMIX TO BE GRADE C16/20

(GEN 3). UNLESS NOTED OTHERWISE.

9...ALL LEVELS ARE IN METRES ABOVE ORDINANCE DATUM (U.N.O.) INDICATING STRUCTURAL LEVEL (SSL) 10...DO NOT SCALE FROM DRAWINGS, USE FIGURED DIMENSIONS ONLY. ANY DISCREPANCIES TO BE REPORTED TO THE STRUCTURAL ENGINEER PRIOR TO COMMENCEMENT OF WORKS.

11...ALL WORKS SHALL BE CARRIED OUT IN A SAFE MANNER AND IN ACCORDANCE WITH THE HEALTH AND SAFETY REGULATIONS. METHOD STATEMENTS (WHERE REQUIRED) SHALL BE SUBMITTED TO THE ENGINEER OR

12...THE CONTRACTOR SHALL COMPLY WITH ALL STATUTORY AUTHORITY REQUIREMENTS INCLUDING PLANNING CONDITIONS, FIRE SAFETY CERTIFICATE CONDITIONS, LOCAL AUTHORITY DRAINAGE REQUIREMENTS etc. 13..PROJECT DRAWINGS AND SPECIFICATIONS REFERENCE TO BUILDING REGULATIONS, BRITISH, IRISH OR OTHER NATIONAL STANDARD OR CODES OF PRACTICE DO NOT GIVE THE YEAR OF ISSUE OR DATES OF AMENDMENTS. THE LATEST RELEVANT PUBLISHED VERSION INCLUDING ANY RELEVANT AMENDMENTS AND ADD END AT THE

DATE OF INVITATION TO TENDER SHALL APPLY. WHERE A STANDARD OR CODE OF PRACTICE HAS BEEN SUPERSEDED, THE LATEST EDITION OF THE SUPERSEDING PUBLICATION SHALL APPLY. 14.. ANY DISCREPANCIES DISCOVERED BETWEEN DESIGN TEAM DRAWINGS TO BE REPORTED IMMEDIATELY AND CLARIFICATION SOUGHT AND DISCREPANCY CORRECTED PRIOR TO CONSTRUCTION COMMENCING

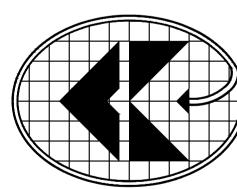
DRAINAGE NOTES:

1...CONTRACTOR TO MAKE ALL NECESSARY ENQUIRIES REGARDING LOCATION OF EXISTING SEWERS, ELECTRICAL AND OTHER SERVICES ON SITE.

2...FOR DRAINAGE WORK LOCAL TO BUILDINGS, REFER TO ARCHITECT'S DRAWINGS.

3...ALL DRAINAGE WORK TO BE CARRIED OUT IN ACCORDANCE WITH THE CURRENT SPECIFICATION, PART H BUILDING REGULATIONS AND DEPT. OF ENVIRONMENT DOCUMENT "RECOMMENDATIONS FOR SITE DEVELOPMENT WORKS FOR HOUSING AREAS', & WRC 'SEWERS FOR ADOPTION 6th EDITION' A DESIGN & CONSTRUCTION GUIDE FOR DEVELOPERS AND UISCE ÉIREANN WASTEWATER CODE OF PRACTICE.

4...BEDDING MATERIAL TO BE 10mm SINGLE SIZED AGGREGATE COMPLYING WITH THE REQUIREMENTS OF ACGREGATES FOR CONCRETE'. FOR RIGID PIPES THE GRANULAR MATERIAL SHOULD CONFORM TO BS EN 1610
ANNEX B TABLE B AND SHOULD BE SINGLE SIZE MATERIAL OR GRADED MATERIAL FROM 5mm TO 10mm FOR
100mm PIPES; 14mm FOR 150mm PIPES; 20mm FOR 150mm — 600mm DIAMETER AND 40mm FOR PIPES MORE THAN 600mm DIAMETER.


5...THE PREPARED UNDERBED OF THE TRENCH SHOULD CONSIST OF BEDDING MATERIAL FOR THE FULL WIDTH OF THE TRENCH AND LAID TO THE CORRECT GRADIENT. 6...THE MINIMUM THICKNESS OF BEDDING MATERIAL UNDER THE BARREL OF THE PIPE SHOULD BE 100MM

7...IMPORTED BEDDING MATERIAL AND BACKFILL USING 'AS DUG MATERIAL' MUST BE APPROVED BY ENGINEER. 8...ALL PVC-U PIPES AND FITTINGS USED FOR DRAIN AND SEWER MUST COMPLY WITH IS.424 " UNPLASTICISED POLYVINYL CHLORIDE (PVC-U)PIPES AND FITTINGS FOR BURIED DRAINAGE AND SEWAGE

REFER TO CK DRAWING 300 FOR PLAN LAYOUT OF DRAINAGE NETWORK

$F_{\rm a}$ –	8/0	
Rev.	Revision	Date

ı				DRAWING STATUS		
	Р	PRELIMINARY	Α	APPROVAL	Τ	TENDER
	С	CONSTRUCTION	R	RECORD	1	INFORMATION
	\equiv					

COYLE KENNEDY **Consulting Engineers**

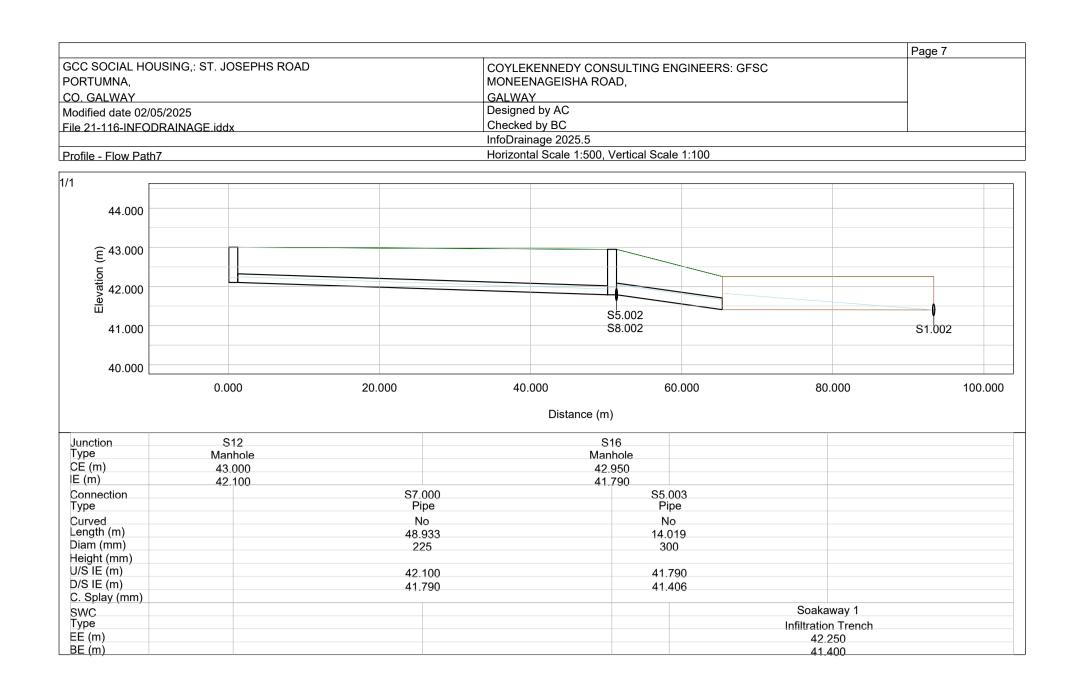
Moneenageisha Rd,

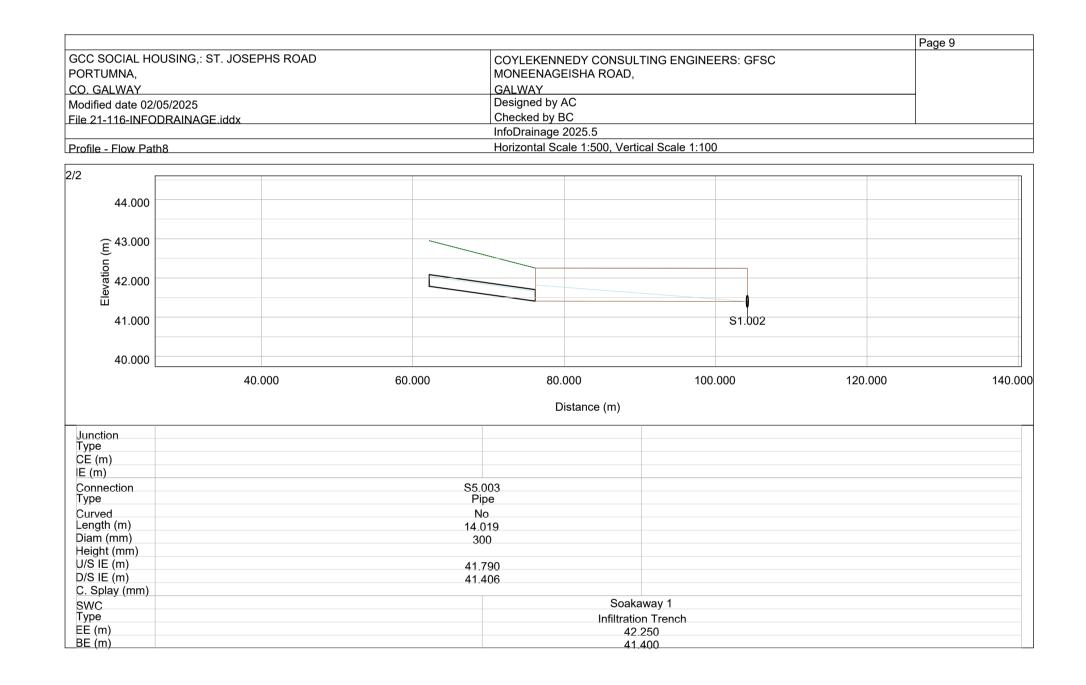
+353 (0)91 752000

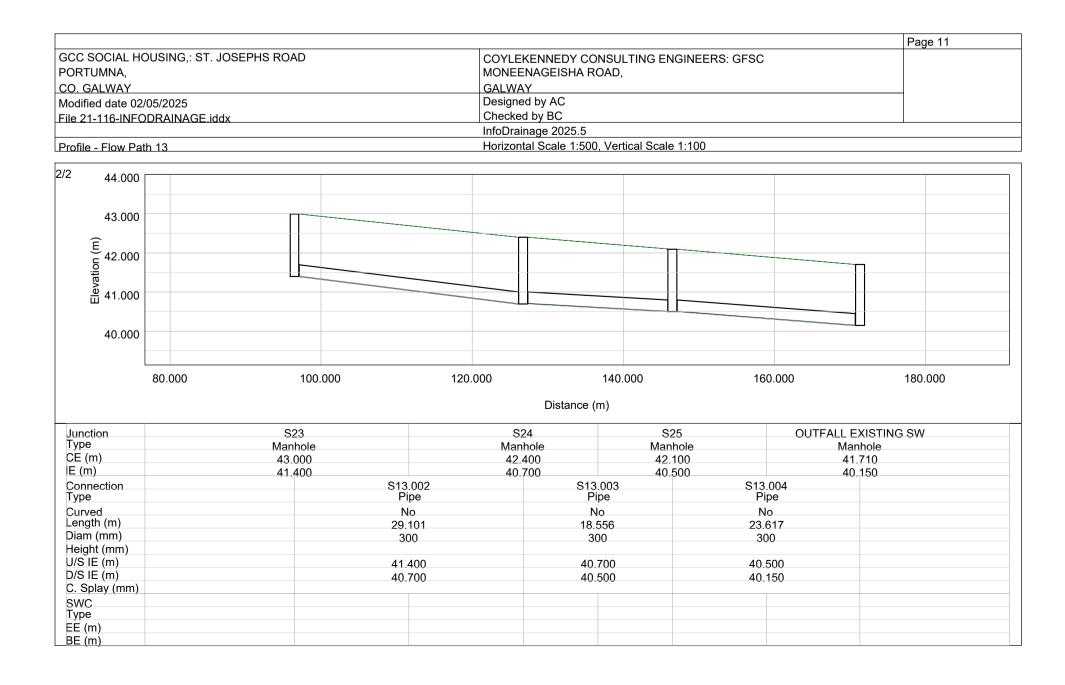
+353 (0)91 753000

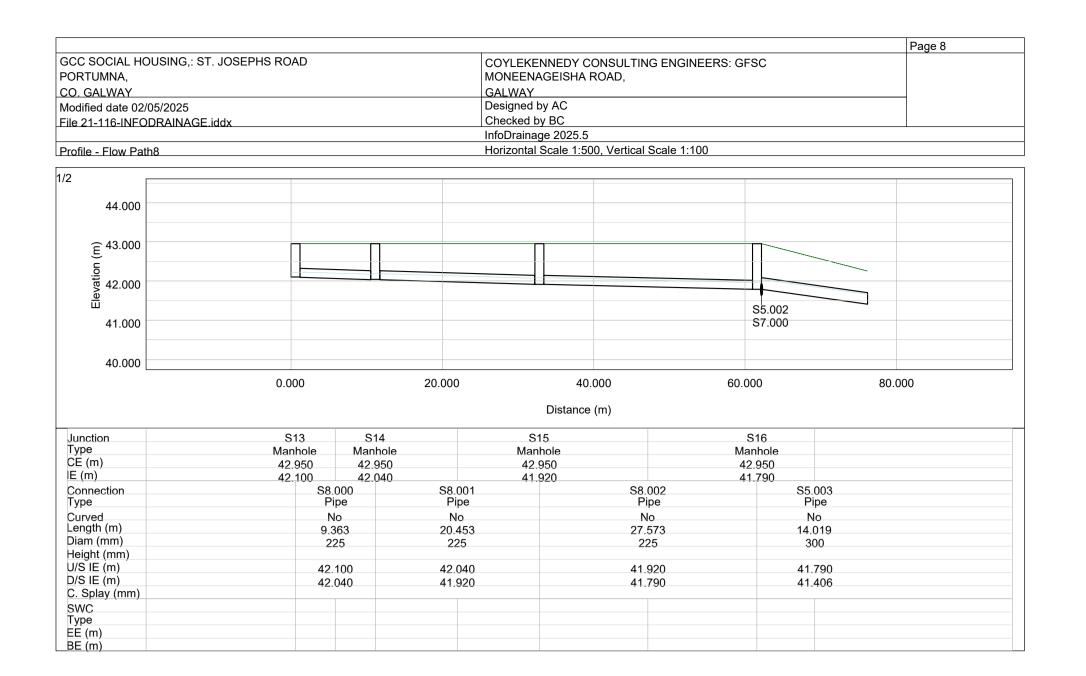
Website: www.coylekennedy.com mail@coylekennedy.com

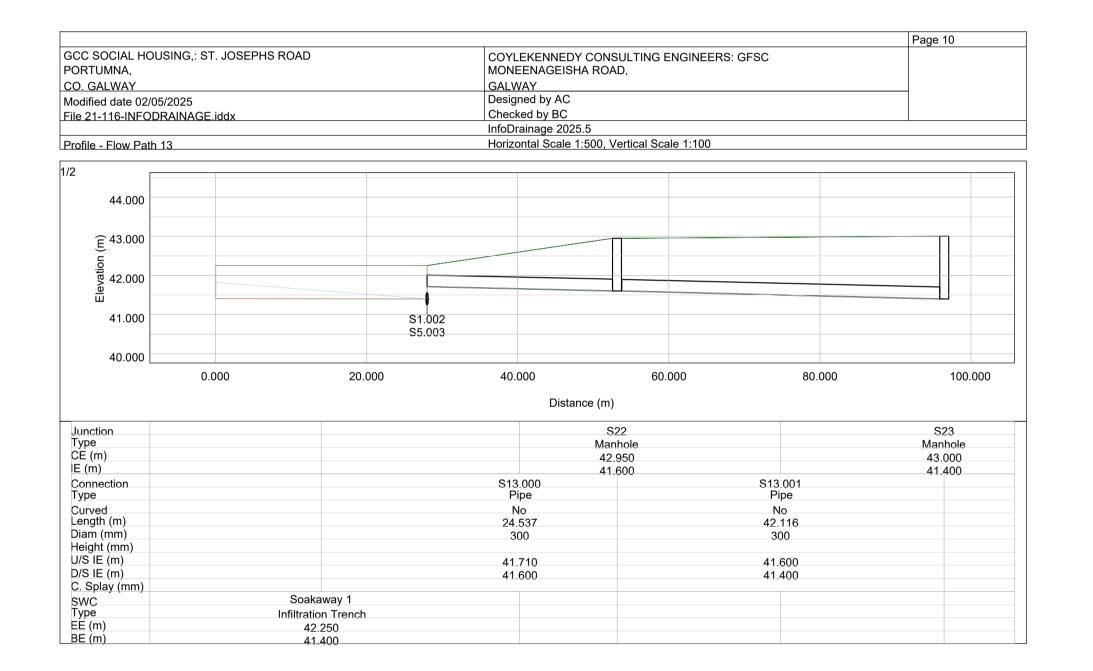
PROJECT GCC SOCIAL HOUSING, PORTUMNA, CO. GALWAY


GALWAY COUNTY COUNCIL


AC


STORM DRAINAGE SECTIONS - SHEET 1


PROJECT No. STATUS - DRAWING No. P-303 MAY 2025 DRAWING REV. SCALE 1:500,100,**@** A1 CHECKED


BC

GENERAL NOTES

1...ALL COYLE KENNEDY DRAWINGS TO BE READ IN CONJUNCTION WITH ARCHITECTS DRAWINGS AND ALL OTHER RELEVANT DRAWINGS.

2...ALL SETTING OUT, INSULATION, DPC, TANKING / WATERPROOFING, SCREED AND RADON PROTECTION DETAILS BY ARCHITECT & SPECIALIST.

 3...DETAILED SPECIFICATIONS (IF NOT ISSUED) ARE AVAILABLE AT ENGINEERS OFFICE FOR INSPECTION BY

4...REFER TO ARCHITECT FOR DAMP PROOF, TANKING AND GAS PROOFING MEMBRANE REQUIREMENTS.
REQUIREMENTS OF SUBSTRUCTURE GAS/WATER PROOFING MEMBRANES TO BE BY A REPUTABLE, COMPETENT

SPECIALIST WITH ADEQUATE PI.

5...THE CONTRACTOR SHALL BE DEEMED TO HAVE ALLOWED FOR, WITHIN HIS TENDER, EMPLOYING A CHARTERED STRUCTURAL ENGINEER WITH ADEQUATE PROFESSIONAL INDEMNITY INSURANCE TO ASSESS, DESIGN AND DETAIL SUCH TEMPORARY WORKS AS ARE NECESSARY TO OFFER SUPPORT TO EXISTING AND/OR

CONSTRUCTED ELEMENTS DURING THE CONSTRUCTION PERIOD. THIS APPLIES TO ELEMENTS WITHIN THE SITE AND NEIGHBORING THE SITE.

6...THE CONTRACTOR IS DEEMED TO HAVE VISITED THE SITE AND CONSULTED WITH RELEVANT AUTHORITIES AND BE SATISFIED IN RELATION TO THE SITES SURROUNDINGS, EXISTING SERVICES, LEVELS, BOUNDARIES, GROUND CHARACTERISTICS AND ANY OTHER SITE CONSTRAINTS, INCLUDING DIVERSION OF SERVICES AS NECESSARY.

7...ALL WORK TO BE CARRIED OUT IN ACCORDANCE WITH THE CURRENT BUILDING REGULATIONS.

8...WHERE LEANMIX IS SPECIFIED ALL LEANMIX TO BE GRADE C16/20 (GEN 3). UNLESS NOTED OTHERWISE.

9...ALL LEVELS ARE IN METRES ABOVE ORDINANCE DATUM (U.N.O.) INDICATING STRUCTURAL LEVEL (SSL)

10...DO NOT SCALE FROM DRAWINGS. USE FIGURED DIMENSIONS ONLY, ANY DISCREPANCIES TO BE REPORTED

10...DO NOT SCALE FROM DRAWINGS, USE FIGURED DIMENSIONS ONLY. ANY DISCREPANCIES TO BE REPORTED TO THE STRUCTURAL ENGINEER PRIOR TO COMMENCEMENT OF WORKS.

11...ALL WORKS SHALL BE CARRIED OUT IN A SAFE MANNER AND IN ACCORDANCE WITH THE HEALTH AND SAFETY REGULATIONS. METHOD STATEMENTS (WHERE REQUIRED) SHALL BE SUBMITTED TO THE ENGINEER OR OTHER APPOINTED PERSON(S).

12...THE CONTRACTOR SHALL COMPLY WITH ALL STATUTORY AUTHORITY REQUIREMENTS INCLUDING PLANNING CONDITIONS, FIRE SAFETY CERTIFICATE CONDITIONS, LOCAL AUTHORITY DRAINAGE REQUIREMENTS etc.

13..PROJECT DRAWINGS AND SPECIFICATIONS REFERENCE TO BUILDING REGULATIONS, BRITISH, IRISH OR OTHER NATIONAL STANDARD OR CODES OF PRACTICE DO NOT GIVE THE YEAR OF ISSUE OR DATES OF AMENDMENTS. THE LATEST RELEVANT PUBLISHED VERSION INCLUDING ANY RELEVANT AMENDMENTS AND ADD END AT THE

DATE OF INVITATION TO TENDER SHALL APPLY. WHERE A STANDARD OR CODE OF PRACTICE HAS BEEN SUPERSEDED, THE LATEST EDITION OF THE SUPERSEDING PUBLICATION SHALL APPLY.

14.. ANY DISCREPANCIES DISCOVERED BETWEEN DESIGN TEAM DRAWINGS TO BE REPORTED IMMEDIATELY AND CLARIFICATION SOUGHT AND DISCREPANCY CORRECTED PRIOR TO CONSTRUCTION COMMENCING

DRAINAGE NOTES:

1...CONTRACTOR TO MAKE ALL NECESSARY ENQUIRIES REGARDING LOCATION OF EXISTING SEWERS, ELECTRICAL AND OTHER SERVICES ON SITE.

2...FOR DRAINAGE WORK LOCAL TO BUILDINGS, REFER TO ARCHITECT'S DRAWINGS.
3...ALL DRAINAGE WORK TO BE CARRIED OUT IN ACCORDANCE WITH THE CURRENT SPECIFICATION, PART H

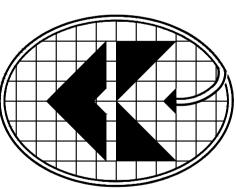
BUILDING REGULATIONS AND DEPT. OF ENVIRONMENT DOCUMENT "RECOMMENDATIONS FOR SITE DEVELOPMENT WORKS FOR HOUSING AREAS', & WRC 'SEWERS FOR ADOPTION 6th EDITION' A DESIGN & CONSTRUCTION GUIDE FOR DEVELOPERS AND UISCE ÉIREANN WASTEWATER CODE OF PRACTICE.

4...BEDDING MATERIAL TO BE 10mm SINGLE SIZED AGGREGATE COMPLYING WITH THE REQUIREMENTS OF

AGGREGATES FOR CONCRETE'. FOR RIGID PIPES THE GRANULAR MATERIAL SHOULD CONFORM TO BS EN 1610 ANNEX B TABLE B AND SHOULD BE SINGLE SIZE MATERIAL OR GRADED MATERIAL FROM 5mm TO 10mm FOR 100mm PIPES; 14mm FOR 150mm PIPES; 20mm FOR 150mm — 600mm DIAMETER AND 40mm FOR PIPES MORE THAN 600mm DIAMETER.

5...THE PREPARED UNDERBED OF THE TRENCH SHOULD CONSIST OF BEDDING MATERIAL FOR THE FULL WIDTH OF THE TRENCH AND LAID TO THE CORRECT GRADIENT.

6...THE MINIMUM THICKNESS OF BEDDING MATERIAL UNDER THE BARREL OF THE PIPE SHOULD BE 100MM


7...IMPORTED BEDDING MATERIAL AND BACKFILL USING 'AS DUG MATERIAL' MUST BE APPROVED BY ENGINEER.

8...ALL PVC-U PIPES AND FITTINGS USED FOR DRAIN AND SEWER MUST COMPLY WITH IS.424 "
UNPLASTICISED POLYVINYL CHLORIDE (PVC-U)PIPES AND FITTINGS FOR BURIED DRAINAGE AND SEWAGE

REFER TO CK DRAWING 300 FOR PLAN LAYOUT OF DRAINAGE NETWORK

I 						
$F_{\rm a}$ –	$F_a - 8/0$					
Rev.	Revision	Date				

_	DDEL IL VILLADO	'	DRAWING STATUS	_	
Р	PRELIMINARY	A	APPROVAL	_	TENDER
С	CONSTRUCTION	R	RECORD	1	INFORMATION

COYLE KENNEDY Consulting Engineers

GFSC, Moneenageisha Rd, Galway.

> +353 (0)91 752000 +353 (0)91 753000

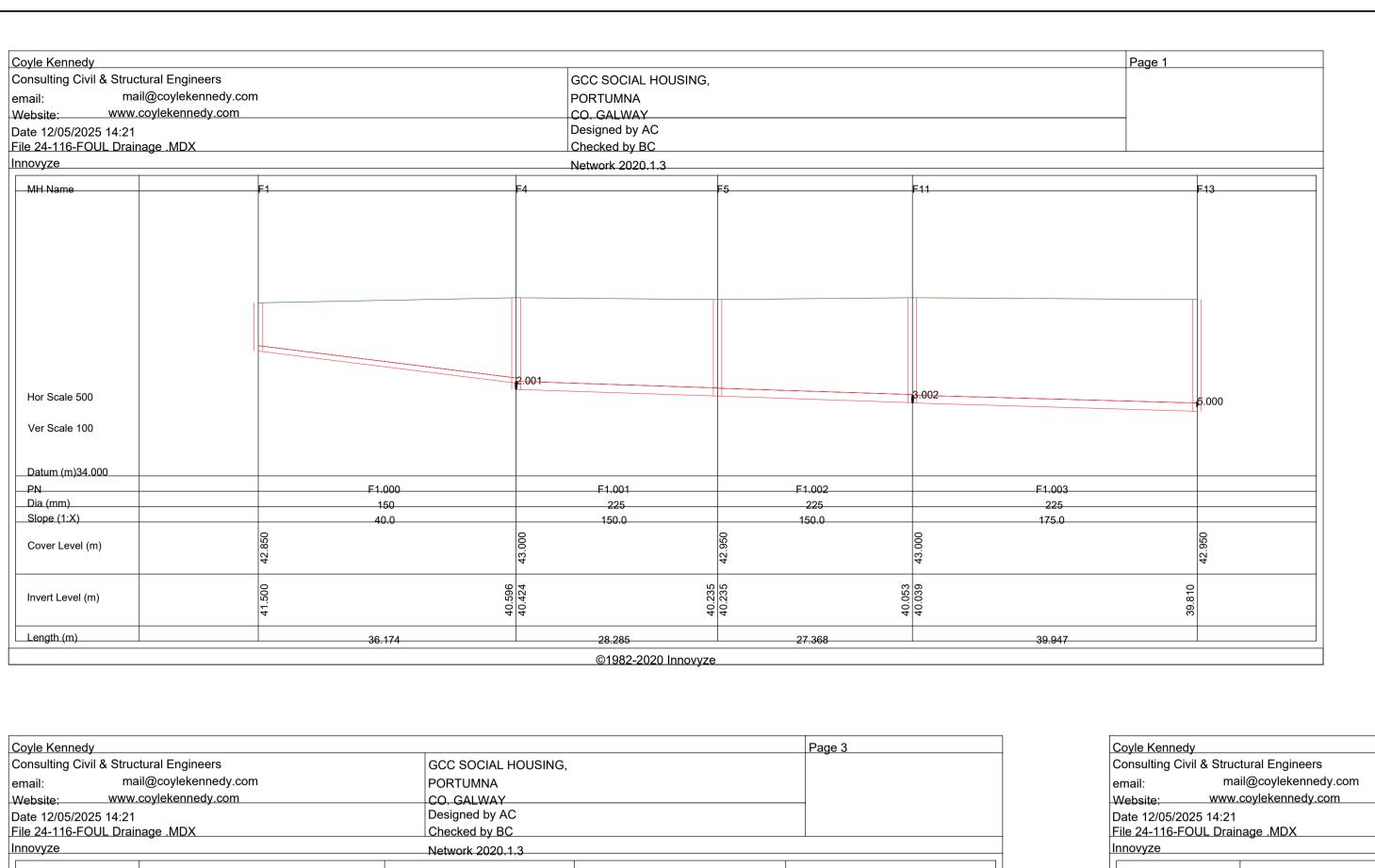
Website: www.coylekennedy.com mail@coylekennedy.com

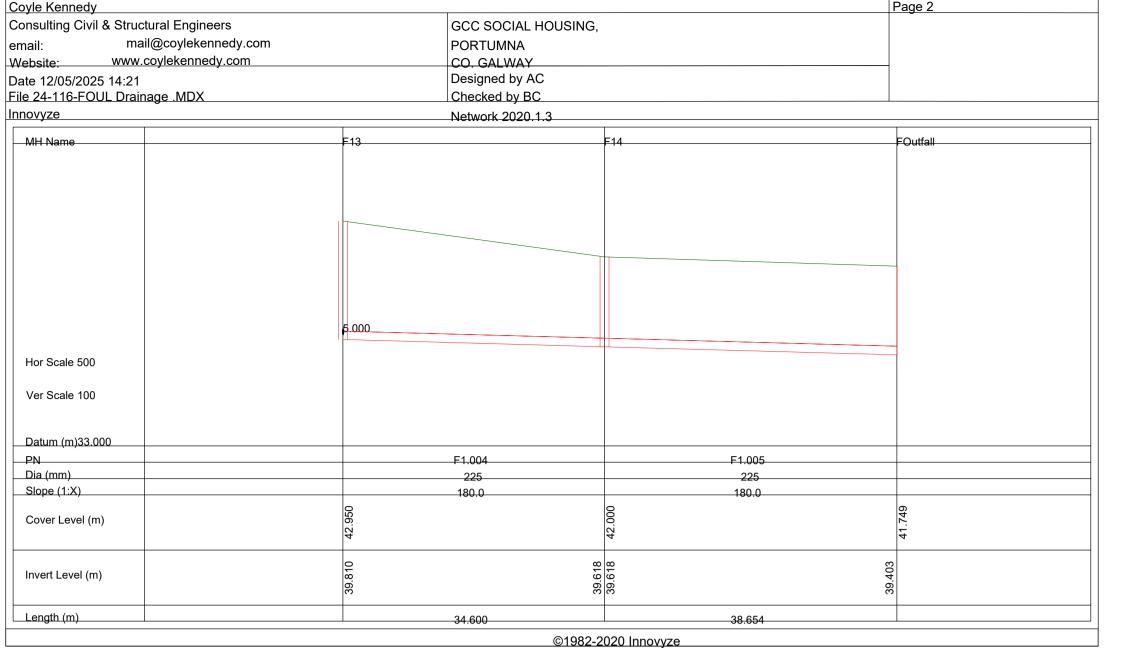
PROJECT

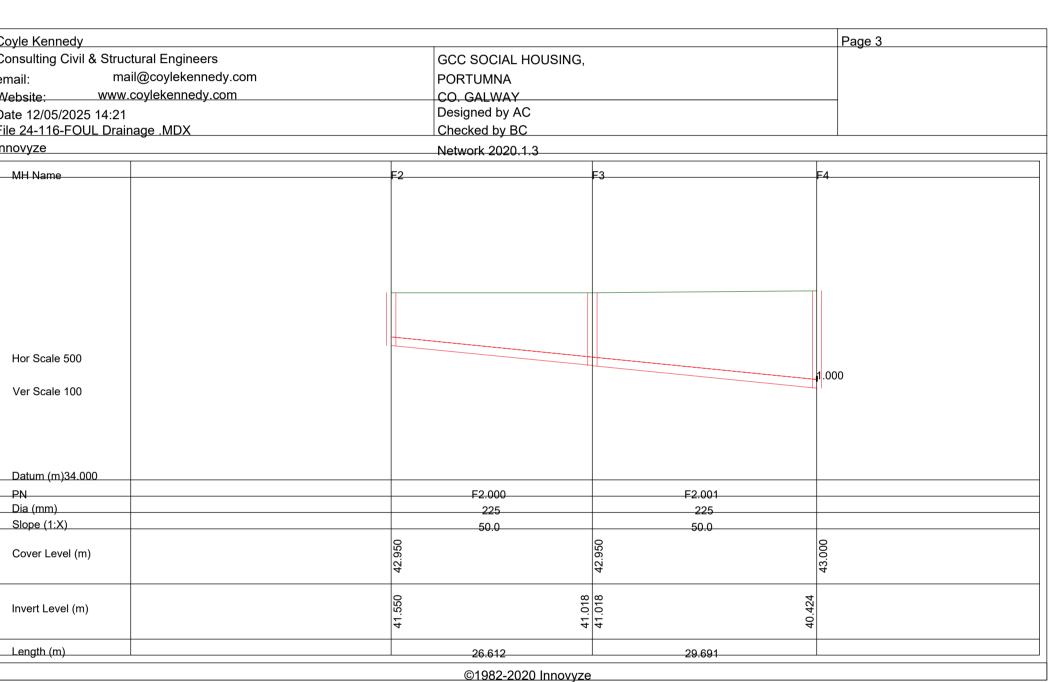
1:500,100,**©** A1

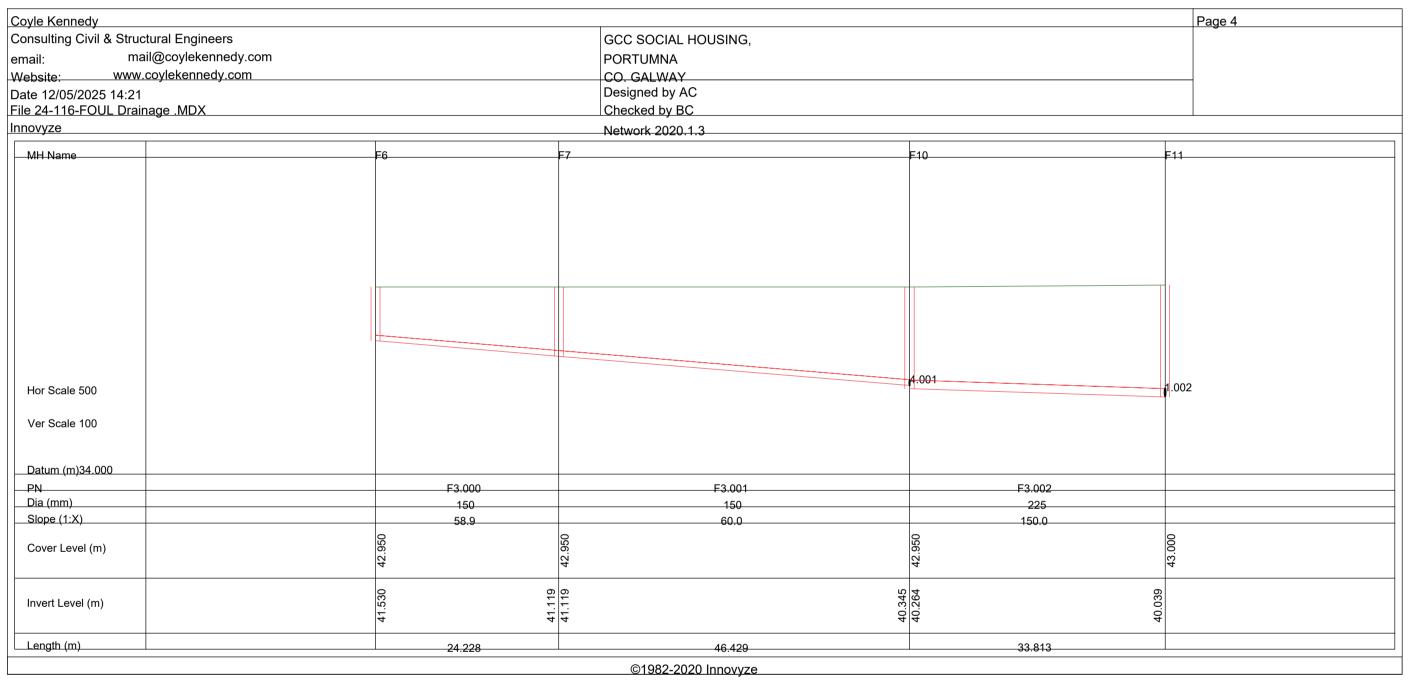
GCC SOCIAL HOUSING, PORTUMNA, CO. GALWAY

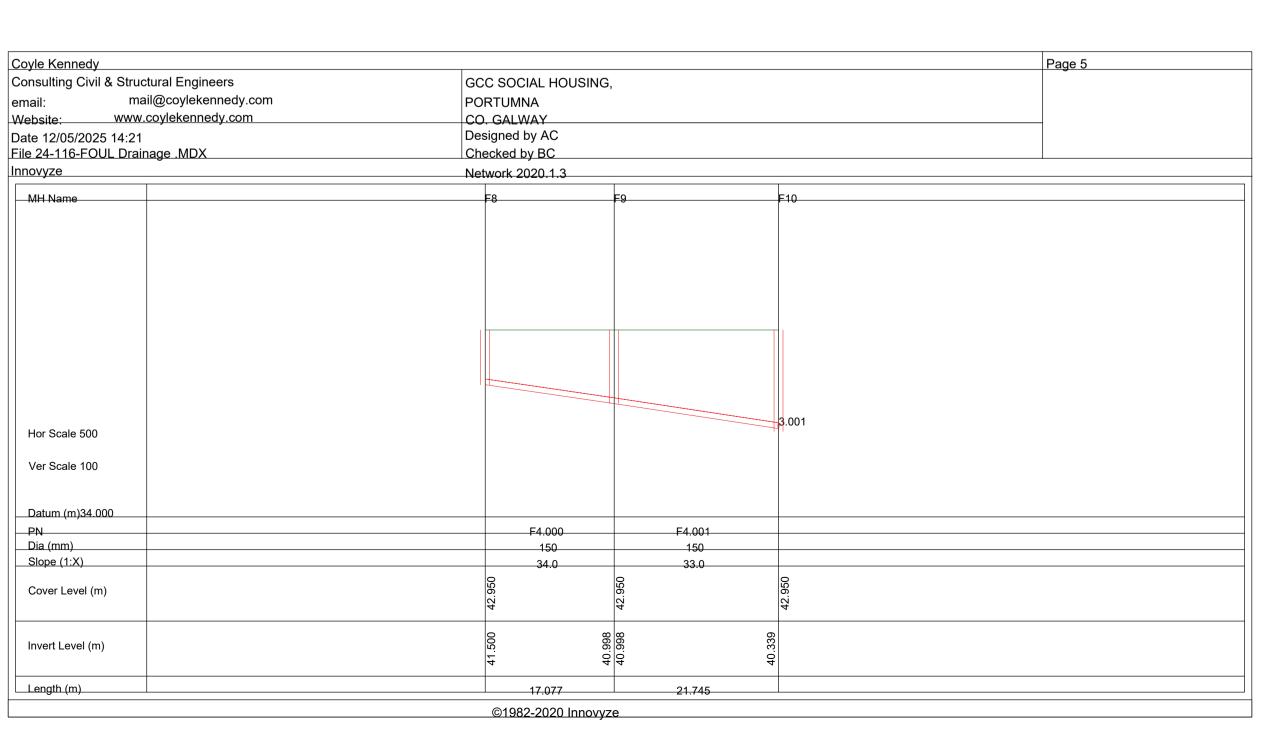
CLIENT

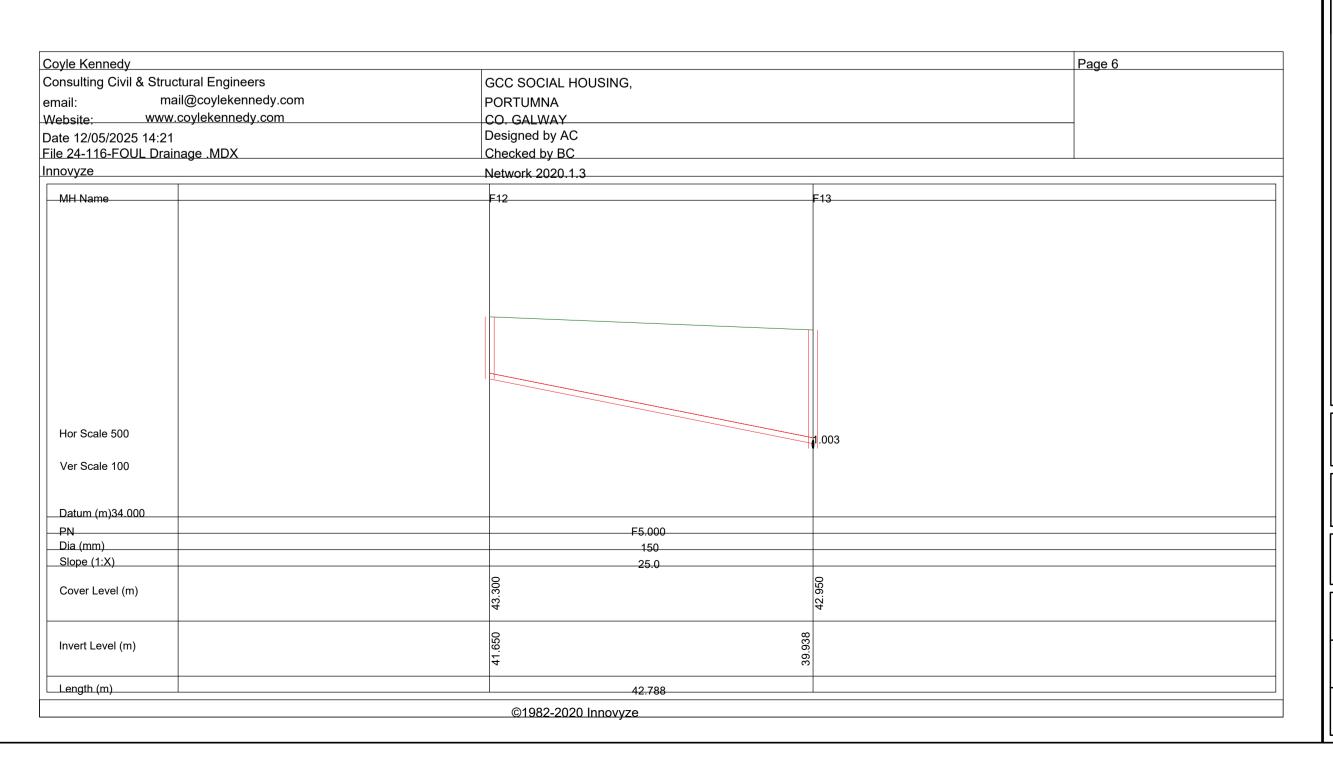

GALWAY COUNTY COUNCIL


AC


LE STORM DRAINAGE SECTIONS — SHEET 2


l	PROJECT No.	24-116	;		STATUS -	DRAWING	No.
l	DATE				P-	304	
l		MAY 20	25		DRAWING	REV.	
ı	SCALE	BY		CHECKED			


BC



GENERAL NOTES

1...ALL COYLE KENNEDY DRAWINGS TO BE READ IN CONJUNCTION WITH ARCHITECTS DRAWINGS AND ALL OTHER RELEVANT DRAWINGS.

2...ALL SETTING OUT, INSULATION, DPC, TANKING / WATERPROOFING, SCREED AND RADON PROTECTION DETAILS BY ARCHITECT & SPECIALIST. 3...DETAILED SPECIFICATIONS (IF NOT ISSUED) ARE AVAILABLE AT ENGINEERS OFFICE FOR INSPECTION BY

4...REFER TO ARCHITECT FOR DAMP PROOF, TANKING AND GAS PROOFING MEMBRANE REQUIREMENTS. REQUIREMENTS OF SUBSTRUCTURE GAS/WATER PROOFING MEMBRANES TO BE BY A REPUTABLE, COMPETENT

SPECIALIST WITH ADEQUATE PI.

5...THE CONTRACTOR SHALL BE DEEMED TO HAVE ALLOWED FOR, WITHIN HIS TENDER, EMPLOYING A CHARTERED STRUCTURAL ENGINEER WITH ADEQUATE PROFESSIONAL INDEMNITY INSURANCE TO ASSESS, DESIGN AND DETAIL SUCH TEMPORARY WORKS AS ARE NECESSARY TO OFFER SUPPORT TO EXISTING AND/OR CONSTRUCTED ELEMENTS DURING THE CONSTRUCTION PERIOD. THIS APPLIES TO ELEMENTS WITHIN THE SITE AND NEIGHBORING THE SITE.

6...THE CONTRACTOR IS DEEMED TO HAVE VISITED THE SITE AND CONSULTED WITH RELEVANT AUTHORITIES AND BE SATISFIED IN RELATION TO THE SITES SURROUNDINGS, EXISTING SERVICES, LEVELS, BOUNDARIES, GROUND CHARACTERISTICS AND ANY OTHER SITE CONSTRAINTS, INCLUDING DIVERSION OF SERVICES AS NECESSARY.

7...ALL WORK TO BE CARRIED OUT IN ACCORDANCE WITH THE CURRENT BUILDING REGULATIONS.

8...WHERE LEANMIX IS SPECIFIED ALL LEANMIX TO BE GRADE C16/20 (GEN 3). UNLESS NOTED OTHERWISE.

9...ALL LEVELS ARE IN METRES ABOVE ORDINANCE DATUM (U.N.O.) INDICATING STRUCTURAL LEVEL (SSL) 10...DO NOT SCALE FROM DRAWINGS, USE FIGURED DIMENSIONS ONLY. ANY DISCREPANCIES TO BE REPORTED TO THE STRUCTURAL ENGINEER PRIOR TO COMMENCEMENT OF WORKS.

11...ALL WORKS SHALL BE CARRIED OUT IN A SAFE MANNER AND IN ACCORDANCE WITH THE HEALTH AND SAFETY REGULATIONS. METHOD STATEMENTS (WHERE REQUIRED) SHALL BE SUBMITTED TO THE ENGINEER OR

12...THE CONTRACTOR SHALL COMPLY WITH ALL STATUTORY AUTHORITY REQUIREMENTS INCLUDING PLANNING CONDITIONS, FIRE SAFETY CERTIFICATE CONDITIONS, LOCAL AUTHORITY DRAINAGE REQUIREMENTS etc.

13..PROJECT DRAWINGS AND SPECIFICATIONS REFERENCE TO BUILDING REGULATIONS, BRITISH, IRISH OR OTHER NATIONAL STANDARD OR CODES OF PRACTICE DO NOT GIVE THE YEAR OF ISSUE OR DATES OF AMENDMENTS. THE LATEST RELEVANT PUBLISHED VERSION INCLUDING ANY RELEVANT AMENDMENTS AND ADD END AT THE DATE OF INVITATION TO TENDER SHALL APPLY. WHERE A STANDARD OR CODE OF PRACTICE HAS BEEN SUPERSEDED, THE LATEST EDITION OF THE SUPERSEDING PUBLICATION SHALL APPLY.

14.. ANY DISCREPANCIES DISCOVERED BETWEEN DESIGN TEAM DRAWINGS TO BE REPORTED IMMEDIATELY AND CLARIFICATION SOUGHT AND DISCREPANCY CORRECTED PRIOR TO CONSTRUCTION COMMENCING

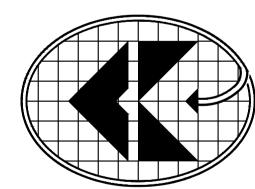
DRAINAGE NOTES:

1...CONTRACTOR TO MAKE ALL NECESSARY ENQUIRIES REGARDING LOCATION OF EXISTING SEWERS, ELECTRICAL AND OTHER SERVICES ON SITE.

2...FOR DRAINAGE WORK LOCAL TO BUILDINGS, REFER TO ARCHITECT'S DRAWINGS.

3...ALL DRAINAGE WORK TO BE CARRIED OUT IN ACCORDANCE WITH THE CURRENT SPECIFICATION, PART H BUILDING REGULATIONS AND DEPT. OF ENVIRONMENT DOCUMENT "RECOMMENDATIONS FOR SITE DEVELOPMENT WORKS FOR HOUSING AREAS', & WRG 'SEWERS FOR ADOPTION 6th EDITION' A DESIGN & CONSTRUCTION GUIDE FOR DEVELOPERS AND UISCE ÉIREANN WASTEWATER CODE OF PRACTICE.

4...BEDDING MATERIAL TO BE 10mm SINGLE SIZED AGGREGATE COMPLYING WITH THE REQUIREMENTS OF ACGREGATES FOR CONCRETE'. FOR RIGID PIPES THE GRANULAR MATERIAL SHOULD CONFORM TO BS EN 1610
ANNEX B TABLE B AND SHOULD BE SINGLE SIZE MATERIAL OR GRADED MATERIAL FROM 5mm TO 10mm FOR 100mm PIPES; 14mm FOR 150mm PIPES; 20mm FOR 150mm — 600mm DIAMETER AND 40mm FOR PIPES MORE THAN 600mm DIAMETER.


5...THE PREPARED UNDERBED OF THE TRENCH SHOULD CONSIST OF BEDDING MATERIAL FOR THE FULL WIDTH OF THE TRENCH AND LAID TO THE CORRECT GRADIENT.

6...THE MINIMUM THICKNESS OF BEDDING MATERIAL UNDER THE BARREL OF THE PIPE SHOULD BE 100MM 7...IMPORTED BEDDING MATERIAL AND BACKFILL USING 'AS DUG MATERIAL' MUST BE APPROVED BY ENGINEER. 8...ALL PVC-U PIPES AND FITTINGS USED FOR DRAIN AND SEWER MUST COMPLY WITH IS.424 " UNPLASTICISED POLYVINYL CHLORIDE (PVC-U)PIPES AND FITTINGS FOR BURIED DRAINAGE AND SEWAGE

REFER TO CK DRAWING 300 FOR PLAN LAYOUT OF DRAINAGE NETWORK

${ m F_a}$ –	- 8/0	
Rev.	Revision	Date
	DRAWNIA CTATUS	

Р	PRELIMINARY	Α	APPROVAL	Т	TENDER
С	CONSTRUCTION	R	RECORD	_	INFORMATION

COYLE KENNEDY **Consulting Engineers**

Moneenageisha Rd, Galway.

> +353 (0)91 752000 +353 (0)91 753000

Website: www.coylekennedy.com mail@coylekennedy.com

PROJECT GCC SOCIAL HOUSING, PORTUMNA, CO. GALWAY

GALWAY COUNTY COUNCIL

FOUL DRAINAGE SECTIONS

PROJECT No. P-305 MAY 2025 DRAWING REV. SCALE 1:500,100,@ A1 CHECKED AC

STATUS - DRAWING No.

GENERAL NOTES

1...ALL COYLE KENNEDY DRAWINGS TO BE READ IN CONJUNCTION WITH ARCHITECTS DRAWINGS AND ALL OTHER RELEVANT DRAWINGS.

2...ALL SETTING OUT, INSULATION, DPC, TANKING $\!\!\!/$ WATERPROOFING, SCREED AND RADON PROTECTION DETAILS BY ARCHITECT & SPECIALIST. 3...DETAILED SPECIFICATIONS (IF NOT ISSUED) ARE AVAILABLE AT ENGINEERS OFFICE FOR INSPECTION BY CONTRACTORS, BY APPOINTMENT.

4...REFER TO ARCHITECT FOR DAMP PROOF, TANKING AND GAS PROOFING MEMBRANE REQUIREMENTS.
REQUIREMENTS OF SUBSTRUCTURE GAS/WATER PROOFING MEMBRANES TO BE BY A REPUTABLE, COMPETENT

5...THE CONTRACTOR SHALL BE DEEMED TO HAVE ALLOWED FOR, WITHIN HIS TENDER, EMPLOYING A CHARTERED STRUCTURAL ENGINEER WITH ADEQUATE PROFESSIONAL INDEMNITY INSURANCE TO ASSESS, DESIGN AND DETAIL SUCH TEMPORARY WORKS AS ARE NECESSARY TO OFFER SUPPORT TO EXISTING AND/OR CONSTRUCTED ELEMENTS DURING THE CONSTRUCTION PERIOD. THIS APPLIES TO ELEMENTS WITHIN THE SITE AND NEIGHBORING THE SITE.

6...THE CONTRACTOR IS DEEMED TO HAVE VISITED THE SITE AND CONSULTED WITH RELEVANT AUTHORITIES AND BE SATISFIED IN RELATION TO THE SITES SURROUNDINGS, EXISTING SERVICES, LEVELS, BOUNDARIES, GROUND CHARACTERISTICS AND ANY OTHER SITE CONSTRAINTS, INCLUDING DIVERSION OF SERVICES AS NECESSARY.

7...ALL WORK TO BE CARRIED OUT IN ACCORDANCE WITH THE CURRENT BUILDING REGULATIONS.

9...ALL LEVELS ARE IN METRES ABOVE ORDINANCE DATUM (U.N.O.) INDICATING STRUCTURAL LEVEL (SSL)

10...DO NOT SCALE FROM DRAWINGS, USE FIGURED DIMENSIONS ONLY. ANY DISCREPANCIES TO BE REPORTED TO THE STRUCTURAL ENGINEER PRIOR TO COMMENCEMENT OF WORKS. 11...ALL WORKS SHALL BE CARRIED OUT IN A SAFE MANNER AND IN ACCORDANCE WITH THE HEALTH AND

SAFETY REGULATIONS. METHOD STATEMENTS (WHERE REQUIRED) SHALL BE SUBMITTED TO THE ENGINEER OR 12...THE CONTRACTOR SHALL COMPLY WITH ALL STATUTORY AUTHORITY REQUIREMENTS INCLUDING PLANNING CONDITIONS, FIRE SAFETY CERTIFICATE CONDITIONS, LOCAL AUTHORITY DRAINAGE REQUIREMENTS etc.

13..PROJECT DRAWINGS AND SPECIFICATIONS REFERENCE TO BUILDING REGULATIONS, BRITISH, IRISH OR OTHER NATIONAL STANDARD OR CODES OF PRACTICE DO NOT GIVE THE YEAR OF ISSUE OR DATES OF AMENDMENTS. THE LATEST RELEVANT PUBLISHED VERSION INCLUDING ANY RELEVANT AMENDMENTS AND ADD END AT THE

14.. ANY DISCREPANCIES DISCOVERED BETWEEN DESIGN TEAM DRAWINGS TO BE REPORTED IMMEDIATELY AND CLARIFICATION SOUGHT AND DISCREPANCY CORRECTED PRIOR TO CONSTRUCTION COMMENCING

<u>WATERMAIN NOTES</u>:

1...WATER MAINS SHOULD HAVE A MINIMUM NOMINAL PRESSURE CLASSIFICATION OF 9 BAR. THE FOLLOWING PIPES MAY BE USED:

(A) PIPE TYPE AND MATERIAL SPECIFICATION SHOULD BE IN ACCORDANCE WITH SECTION 3.9 OF THE WATER CODE OF PRACTICE.

(B) DUCTILE IRON PIPES TYPE AND MATERIAL SPECIFICATION SHOULD BE IN ACCORDANCE WITH SECTION 3.9.1 OF THE WATER CODE OF PRACTICE. (C) POLYETHYLENE PIPES TYPE AND MATERIAL SPECIFICATION SHOULD BE IN ACCORDANCE WITH SECTION 3.9.2 AND 3.9.3 OF THE WATER CODE OF PRACTICE.

2...SERVICE PIPES SHOULD HAVE AN INTERNAL DIAMETER OF 25mm AND SHOULD COMPLY WITH WATER CODE OF PRACTICE SECTIONS 3.8 & 3.9 AND STANDARD DETAIL STD-W-03.

3...CLASS OF PIPE TO UISCE ÉIREANN CODE OF PRACTICE 4...CONCRETE ANCHOR BLOCKS TO COMPLY WITH STANDARD DETAIL STD-W-28.

5...THE DEPTH OF THE SLUICE VALVE SPINDLE CAP BELOW FINISHED GROUND LEVEL SHOULD NOT EXCEED

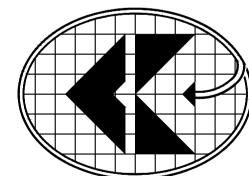
6...DEPTH OF HYDRANT FROM FINISHED GROUND LEVEL SHOULD BE A MAXIMUM OF 250mm. HYDRANTS TO COMPLY WITH UISCE ÉIREANN STANDARD DETAILS STD-W-16 TO STD-W-19.

7...AIR VALVES TO BE IN COMPLIANCE WITH THE REQUIREMENTS LISTED IN UISCE ÉIREANN STANDARD DETAIL STD-W-21.

9...ALL FITTINGS, INCLUDING SLUICE VALVES, BUTTERFLY VALVES, SCOUR VALVES, HYDRANTS, AIR VALVES AND METERS TO COMPLY WITH WATER CODE OF PRACTICE 3.16.

10...NO PIPE, CABLE, CONDUIT OR OTHER SERVICE PIPE SHOULD BE LAID LONGITUDINALLY OVER THE LINE

12...ALL NEW TREES/SHRUBS PLANTING ADJACENT TO WATER MAINS TO COMPLY WITH UISCE ÉIREANN STANDARD DETAIL STD-W-12A.


13...REFER TO STD-W-5 FOR ARRANGEMENT OF FITTINGS/PIPEWORK FOR TEMPORARY STOP ENDS OR PROVISION FOR FOR FUTURE DEVELOPMENT

REFER TO DRAWING 307 FOR SECTION & TYPICAL DETAILS DRAWINGS TO BE READ IN CONJUCTION **WIT CK REPORT 24-116-250512-01RP AND ITS**

APPENDICES

F_a –	8/1	
Α	SITE LAYOUT UPDATED IN ACCORDANCE WITH REVISED ARCHITECTS DRAWINGS	20/05/2025
Rev.	Revision	Date

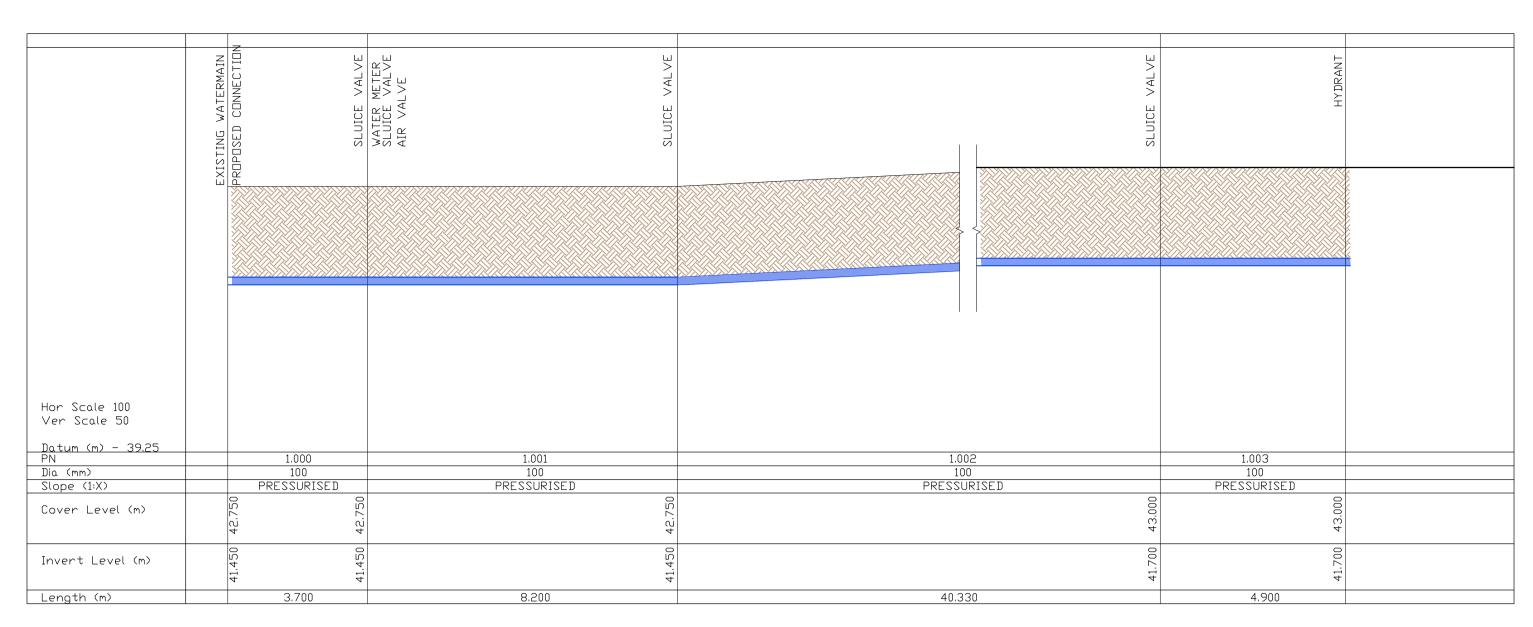
DRAWING STATUS									
PRELIMINARY	Α	APPROVAL	Т	TENDER					
CONSTRUCTION	R	RECORD	1	INFORMATION					

COYLE KENNEDY **Consulting Engineers**

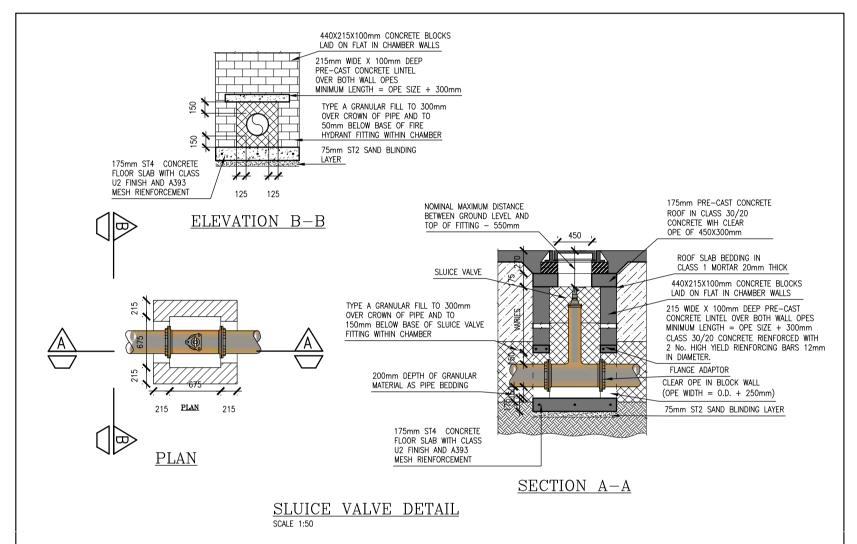
Moneenageisha Rd,

+353 (0)91 753000

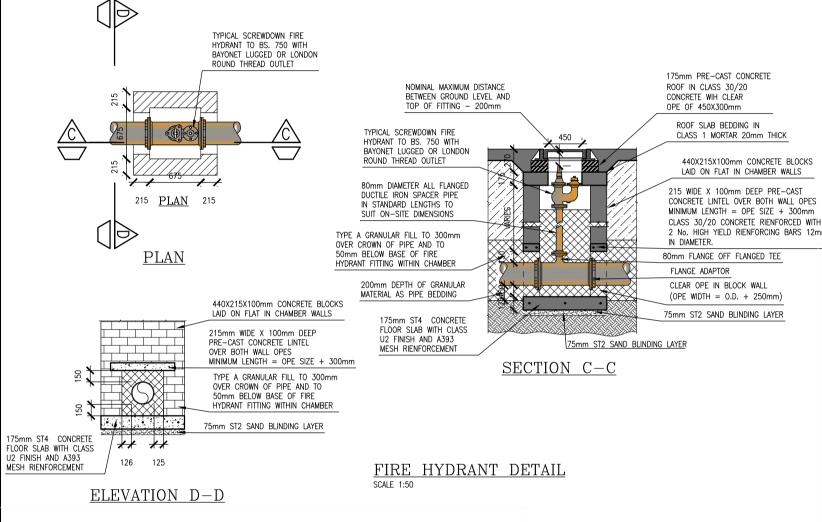
www.coylekennedy.com mail@coylekennedy.com

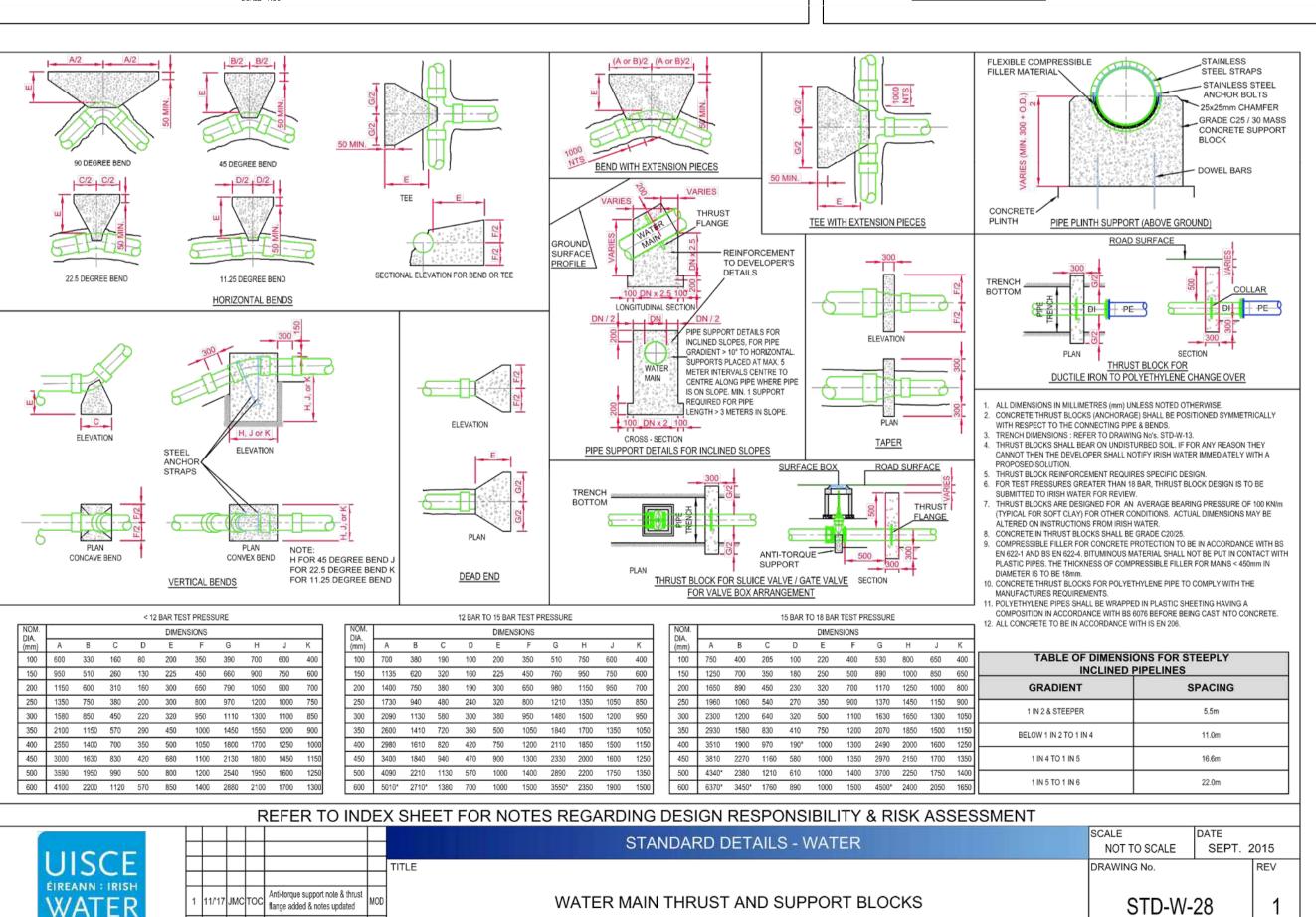

GCC SOCIAL HOUSING, PORTUMNA, CO. GALWAY

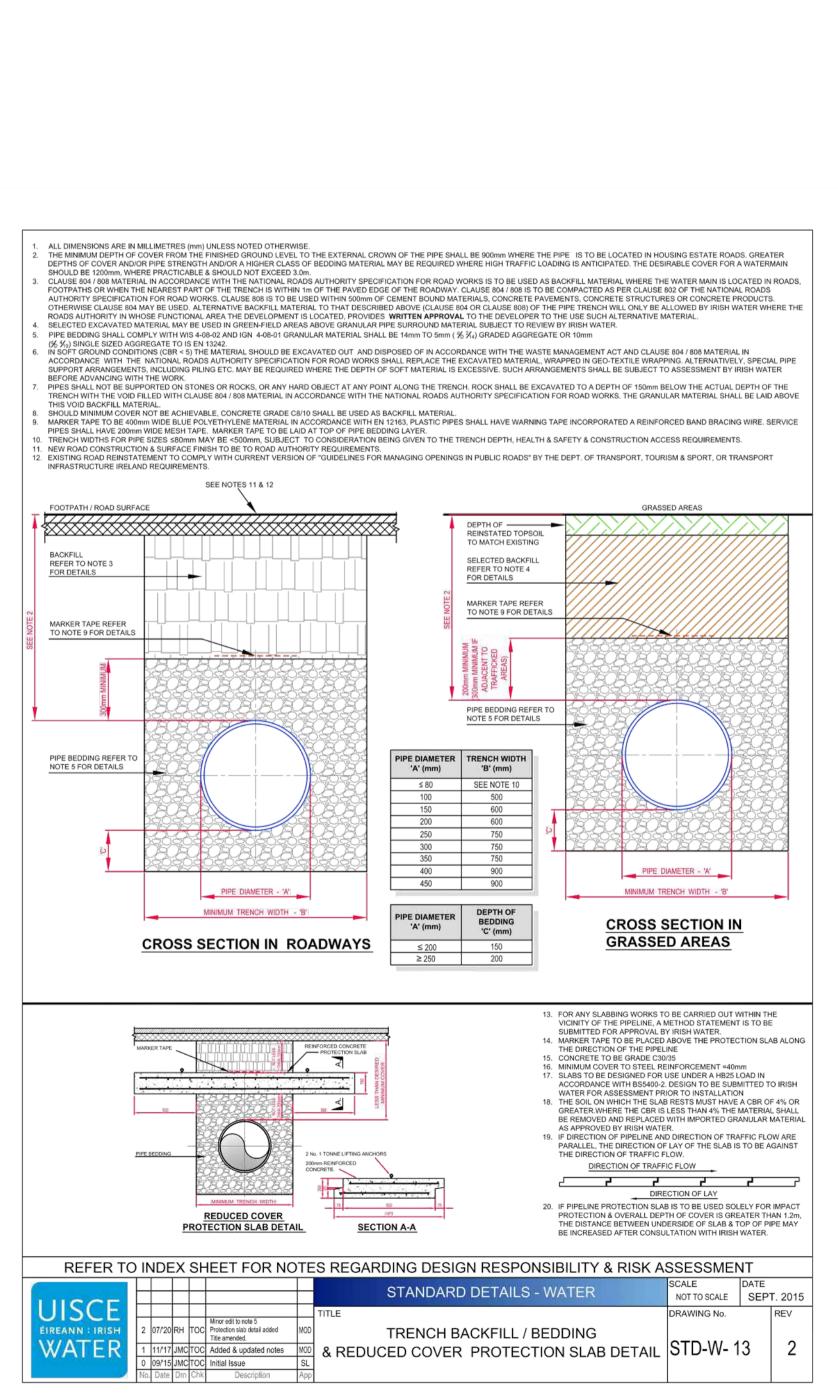
GALWAY COUNTY COUNCIL


SITE DRAINAGE LAYOUT

P-306 MAY 2025 DRAWING REV. AC


STATUS - SKETCH No.




WATERMAIN SECTION – at CONNECTION POINT to HYDRANT

C Initial Issue

MASS CONCRETE THRUST BLOCK

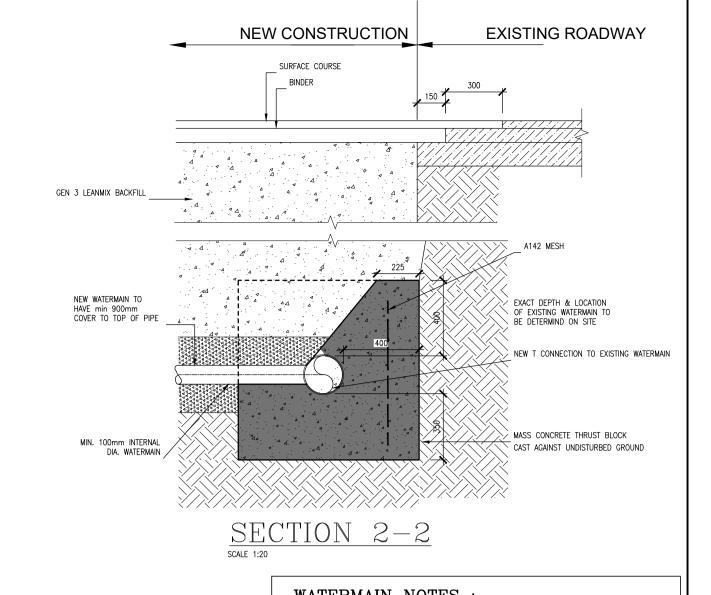
NEW T CONNECTION TO EXISTING WATERMAIN

EXISTING WATERMAIN

WATERMAIN HDPE PIPE

EXISTING WATERMAIN

150mm OF ROUNDED SINGLE SIZED PEBBLE OF 10mm NOMINAL DIAMETER OR SAND

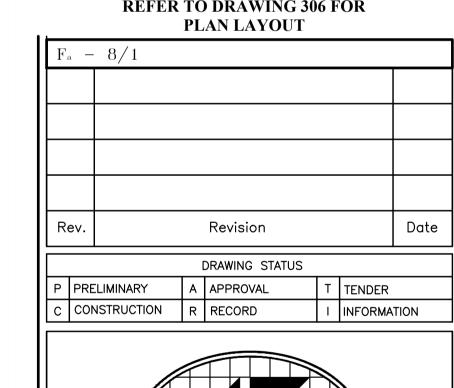

PLAN - THRUST BLOCK 'T'

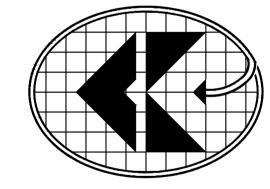
CONNECTION TO EXISTING WATERMAIN

BEDDING MATERIAL

NEW WATERMAIN TO

HAVE 1200mm COVER TO TOP OF PIPE


WATERMAIN NOTES: 1...WATER MAINS SHOULD HAVE A MINIMUM NOMINAL PRESSURE CLASSIFICATION OF 9 BAR. THE FOLLOWING PIPES MAY BE USED: (a) PIPE TYPE AND MATERIAL SPECIFICATION SHOULD BE IN ACCORDANCE WITH SECTION $3.9\,$ OF THE WATER CODE OF PRACTICE. (B) DUCTILE IRON PIPES TYPE AND MATERIAL SPECIFICATION SHOULD BE IN ACCORDANCE WITH SECTION 3.9.1 OF THE WATER CODE OF PRACTICE. (C) POLYETHYLENE PIPES TYPE AND MATERIAL SPECIFICATION SHOULD BE IN ACCORDANCE WITH SECTION 3.9.2 AND 3.9.3 OF THE WATER CODE OF PRACTICE. 2...SERVICE PIPES SHOULD HAVE AN INTERNAL DIAMETER OF 25mm AND SHOULD COMPLY WITH WATER CODE OF PRACTICE 3.9 AND UISCE ÉIREANN STANDARD DETAIL STD-W-03. 3...CLASS OF PIPE TO UISCE ÉIREANN CODE OF PRACTICE 4...CONCRETE ANCHOR BLOCKS TO COMPLY WITH UISCE ÉIREANN STANDARD DETAIL STD-W-28. 5...THE DEPTH OF THE SLUICE VALVE SPINDLE CAP BELOW FINISHED GROUND LEVEL SHOULD NOT EXCEED 6...DEPTH OF HYDRANT FROM FINISHED GROUND LEVEL SHOULD BE A MAXIMUM OF 250mm. HYDRANTS


TO COMPLY WITH UISCE ÉIREANN STANDARD DETAILS STD-W-16 TO STD-W-19. 7...AIR VALVES TO BE IN COMPLIANCE WITH THE REQUIREMENTS LISTED IN UISCE ÉIREANN STANDARD DETAIL STD-W-21.

8...THE BOUNDARY BOX IS TO TO COMPLY WITH UISCE ÉIREANN STANDARD DETAIL STD-W-03. 9...ALL FITTINGS, INCLUDING SLUICE VALVES, BUTTERFLY VALVES, SCOUR VALVES, HYDRANTS, AIR VALVES AND METERS TO COMPLY WITH WATER CODE OF PRACTICE 3.16. 10...NO PIPE, CABLE, CONDUIT OR OTHER SERVICE PIPE SHOULD BE LAID LONGITUDINALLY OVER THE LINE 11...TRENCH BACKFILL AND BEDDING TO COMPLY WITH UISCE ÉIREANN STANDARD DETAIL STD-W-13.

REFER TO DRAWING 306 FOR

12...ALL NEW TREES/SHRUBS PLANTING ADJACENT TO WATER MAINS TO COMPLY WITH UISCE ÉIREANN STANDARD DETAIL STD-W-12A.

COYLE KENNEDY **Consulting Engineers**

Moneenageisha Rd,

+353 (0)91 752000 +353 (0)91 753000

www.coylekennedy.com mail@coylekennedy.com

GCC SOCIAL HOUSING PORTUMNA

GALWAY COUNTY COUNCIL

PROJECT

1:200,1:100,1:50

& 1:20 @ A1

AC

STATUS - DRAWING No. PROJECT No. 24-116 P-307 DRAWING REV.

> CHECKED BC

WATERMAIN SECTIONS & TYPICAL DETAILS

Coyle Kennedy	Page 1	
Consulting Civil & Structura	GCC SOCIAL HOUSING,	
email: mail@coyleken	PORTUMNA	
Website: www.coylekenned	CO. GALWAY	Mirro
Date 12/05/2025 14:19	Designed by AC	Designado
File 24-116-FOUL Drainage .MDX	Checked by BC	Drainage
Innovvze	Network 2020.1.3	•

FOUL SEWERAGE DESIGN

<u>Design Criteria for Foul - Main</u>

Pipe Sizes STANDARD Manhole Sizes STANDARD

<pre>Industrial Flow (1/s/ha)</pre>	0.00	Add Flow / Climate Change (%)	0
Industrial Peak Flow Factor	0.00	Minimum Backdrop Height (m)	0.200
Flow Per Person (1/per/day)	150.00	Maximum Backdrop Height (m)	1.500
Persons per House	3.00	Min Design Depth for Optimisation (m)	1.200
Domestic (l/s/ha)	0.00	Min Vel for Auto Design only (m/s)	0.75
Domestic Peak Flow Factor	6.00	Min Slope for Optimisation (1:X)	500

Designed with Level Soffits

Network Design Table for Foul - Main

PN	Length	Fall	Slope	Area	Houses	Base	•	k	HYD	DIA	Section Type
	(m)	(m)	(1:X)	(ha)		Flow (1	/s)	(mm)	SECT	(mm)	
F1.000	36.174	0.904	40.0	0.000	6		0.0	1.500	0	150	Pipe/Conduit
F2.000	26.612	0.532	50.0	0.000	2		0.0	1.500	0	225	Pipe/Conduit
F2.001	29.691	0.594	50.0	0.000	2		0.0	1.500	0	225	Pipe/Conduit
F1.001	28.285	0.189	150.0	0.000	1		0.0	1.500	0	225	Pipe/Conduit
F1.002	27.368	0.182	150.0	0.000	1		0.0	1.500	0	225	Pipe/Conduit
F3.000	24.228	0.411	58.9	0.000	6		0.0	1.500	0	150	Pipe/Conduit
F3.001	46.429	0.774	60.0	0.000	2		0.0	1.500	0	150	Pipe/Conduit
F4.000	17.077	0.502	34.0	0.000	4		0.0	1.500	0	150	Pipe/Conduit
F4.001	21.745	0.659	33.0	0.000	1		0.0	1.500	0	150	Pipe/Conduit

Network Results Table

PN	US/IL (m)		Σ Base Flow (1/s)	Σ Hse	Add Flow (1/s)	P.Dep (mm)	P.Vel (m/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
F1.000	41.500	0.000	0.0	6	0.0	10	0.39	1.39	24.5	0.2
F2.000	41.550	0.000	0.0	2	0.0	6 8	0.23	1.63	64.6	0.1
F2.001	41.018	0.000	0.0	4	0.0	ď	0.30	1.63	64.6	0.1
F1.001	40.424	0.000	0.0	11	0.0	16	0.28	0.94	37.2	0.3
F1.002	40.235	0.000	0.0	12	0.0	16	0.29	0.94	37.2	0.4
F3.000	41.530	0.000	0.0	6	0.0	11	0.34	1.14	20.2	0.2
F3.001	41.119	0.000	0.0	8	0.0	12	0.37	1.13	20.0	0.3
F4.000	41.500	0.000	0.0	4	0.0	8	0.36	1.51	26.6	0.1
F4.001	40.998	0.000	0.0	5	0.0	9	0.39	1.53	27.0	0.2

©1982-2020 Innovyze

Coyle Kenne	Page 2		
Consulting	Civil & Structura	GCC SOCIAL HOUSING,	
email:	mail@coyleken	PORTUMNA	The same of
Website: www.coylekenned		CO. GALWAY	Micro
Date 12/05,	/2025 14:19	Designed by AC	Drainage
File 24-11	6-FOUL Drainage .MDX	Checked by BC	Dialilade
Innovyze		Network 2020.1.3	<u>'</u>

<u>Network Design Table for Foul - Main</u>

PN	Length (m)	Fall (m)	Slope (1:X)		Houses	Base Flow (1/s		HYD SECT		Section Type
F3.002	33.813	0.225	150.0	0.000	3	0.	0 1.500	0	225	Pipe/Conduit
F1.003	39.947	0.228	175.0	0.000	4	0.	0 1.500	0	225	Pipe/Conduit
F5.000	42.788	1.712	25.0	0.000	5	0.	0 1.500	0	150	Pipe/Conduit
F1.004	34.600	0.192	180.0	0.000	0	0.	0 1.500	0	225	Pipe/Conduit
F1.005	38.654	0.215	180.0	0.000	0	0.	0 1.500	0	225	Pipe/Conduit

Network Results Table

PN	US/IL (m)		Σ Base Flow (1/s)		Add Flow (1/s)	-			-		
F3.002	40.264	0.000	0.0	16	0.0	18	0.32	0.94	37.2	0.5	
F1.003	40.039	0.000	0.0	32	0.0	27	0.38	0.87	34.5	1.0	
F5.000	41.650	0.000	0.0	5	0.0	8	0.43	1.76	31.1	0.2	
F1.004 F1.005	39.810 39.618	0.000	0.0	37 37	0.0		0.39	0.85		1.2 1.2	

©1982-2020 Innovyze

Coyle Kennedy	Page 3	
Consulting Civil & Structura	GCC SOCIAL HOUSING,	
email: mail@coyleken	PORTUMNA	
Website: www.coylekenned	CO. GALWAY	Mirro
Date 12/05/2025 14:19	Designed by AC	Designado
File 24-116-FOUL Drainage .MDX	Checked by BC	Dialilage
Innovyze	Network 2020.1.3	

PIPELINE SCHEDULES for Foul - Main

<u>Upstream Manhole</u>

PN	Hyd	Diam	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	Sect	(mm)	Name	(m)	(m)	(m)	Connection	(mm)
F1.000	0	150	F1	42.850	41.500	1.200	Open Manhole	1200
F2.000 F2.001	0	225 225	F2 F3		41.550 41.018		Open Manhole Open Manhole	
F1.001 F1.002	0	225 225	F4 F5	43.000 42.950			Open Manhole Open Manhole	
F3.000 F3.001	0	150 150	F6 F7	42.950 42.950	41.530 41.119		Open Manhole Open Manhole	
F4.000 F4.001	0	150 150	F8 F9	42.950 42.950	41.500 40.998		Open Manhole Open Manhole	
F3.002	0	225	F10	42.950	40.264		Open Manhole	
F1.003	0	225	F11	43.000	40.039	2.736	Open Manhole	1200
F5.000	0	150	F12	43.300	41.650	1.500	Open Manhole	1200
F1.004	0	225	F13	42.950	39.810	2.915	Open Manhole	1200

Downstream Manhole

PN	Length (m)	Slope (1:X)			I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
F1.000	36.174	40.0	F4	43.000	40.596	2.254	Open Manhole	1200
	26.612 29.691		F3 F4	42.950 43.000			Open Manhole Open Manhole	
	28.285 27.368		F5 F11	42.950 43.000			Open Manhole Open Manhole	
	24.228 46.429		F7 F10	42.950 42.950			Open Manhole Open Manhole	
	17.077 21.745		F9 F10	42.950 42.950			Open Manhole Open Manhole	
F3.002	33.813	150.0	F11	43.000	40.039	2.736	Open Manhole	1200
F1.003	39.947	175.0	F13	42.950	39.810	2.915	Open Manhole	1200
F5.000	42.788	25.0	F13	42.950	39.938	2.862	Open Manhole	1200
F1.004	34.600	180.0	F14				Open Manhole	1200
				©1982-	-2020 I:	nnovyze		

Coyle Kennedy			Page 4
Consulting Civil & Structura GCC SOCIAL HOUSING,			
email:	mail@coyleken	PORTUMNA	The same of
Website:	www.coylekenned	CO. GALWAY	Micro
Date 12/05/2025 14:19		Designed by AC	Drainage
File 24-116-FOUL Drainage .MDX Checked by BC		Checked by BC	Drainage
Innovyze		Network 2020.1.3	

PIPELINE SCHEDULES for Foul - Main

<u>Upstream Manhole</u>

PN Hyd Diam MH C.Level I.Level D.Depth MH MH DIAM., L*W Sect (mm) Name (m) (m) (m) Connection (mm)

F1.005 o 225 F14 42.000 39.618 2.157 Open Manhole 1200

Downstream Manhole

 PN
 Length (m)
 Slope (1:X)
 MH (m)
 C.Level (m)
 I.Level (m)
 D.Depth (m)
 MH (m)
 MH (DIAM., L*W)
 L*W

 F1.005
 38.654
 180.0
 FOutfall
 41.749
 39.403
 2.121
 Open Manhole
 0
 0

©1982-2020 Innovyze

