

ENERGY STATEMENT

PROPOSED RESIDENTIAL
DEVELOPMENT AT
ST JOSEPH'S ROAD,
PORTUMNA, CO. GALWAY

Status: A3

Rev: C01

Date: -14-05-2025

LINKED PRACTICES

VARMING CONSULTING ENGINEERS LTD. ARE LINKED TO STEENSEN VARMING INTERNATIONAL OFFICES IN LONDON, DENMARK, HONG KONG, SYDNEY.

www.varming.ie

DOCUMENT CONTROL

Rev	Purpose	Issued to	Issued by	Date	Notes
C01	For Part 8 Planning		VCE	16-05-2025	

CONTENTS

1.	Introduction	1
2.	Building	2
2.1.	Opaque Elements	2
2.2.	Windows & Doors	2
2.3.	Thermal Bridging	3
3.	Ventilation	4
3.1.	Ventilation Method	4
3.2.	Structural Air Tightness	5
3.3.	Cooking	5
4.	Space Heating	5
4.1.	Heat Source	5
4.2.	Controls	6
4.3.	Heat Emitters	7
4.4.	Pumps and Fans	7
5.	Water Heating	7
5.1.	Heat Source	7
5.2.	Controls	8
5.3.	Water Usage	8
6.	Lighting	8
7.	Renewable	8
7.1.	Renewable Energy Source	9
8.	Building Energy Rating Results	10
8.1.	Software Tool	10
8.2.	BER Targets	10

PROPOSED DEVELOPMENT AT ST JOSEPH'S ROAD, PORTUMNA, CO. GALWAY

ENERGY STATEMENT

1. Introduction

This report was produced to accompany a Part 8 Planning Application and outlines the approaches being considered with regards to conservation of fuel and energy within the proposed development. The scheme comprises of 38 residential dwellings that are a mixture of single and two story houses on a site in Portumna. All units are self-contained with own door access.

The proposed development will comply with the requirements of TGD Part L 2022 "Conservation of Fuel and Energy – Dwellings". All units in the proposed development shall be designed and constructed so as to ensure that the energy performance of each dwelling is such as to limit the amount of energy required for the operation of the dwelling and the amount of carbon dioxide emissions associated with this energy use insofar as is reasonably practicable.

Detailed energy rating analysis will be performed on each of the dwelling units. The range of measures & technologies being considered and intended energy efficiency targets are outlined in the following sections in order to achieve compliance with building regulations.

2. Building

In order to limit heat loss from the dwellings, reasonable provision will be made to limit transmission heat loss through the building fabric itself. The energy performance of the structure will firstly be optimised through the selection of the components and materials making up the building envelope.

2.1. Opaque Elements

Proposed target levels of thermal insulation for each of the opaque elements of the dwelling houses are specified in terms of area weighted average U-values in Table 1 for each element type. In order to demonstrate compliance with building regulations maximum backstop values from building regulations are also identified in this table for domestic building types.

Fabric Element	TGD L 2022 Domestic U-value (W/m²K)	Minimum Target U-value (W/m²K)	Compliant	
Pitched Roof	0.16	0.14	\odot	
Walls	0.18	0.18	\otimes	
Ground Floors	0.18 (0.15 with underfloor heating)	0.15		
Other Exposed Floors	0.18	0.16	\odot	

Table 1: Opaque Element Area Weighted Average Elemental U-value Targets

2.2. Windows & Doors

Proposed target levels of window and door thermal performance are specified in terms of area weighted average U-values in Table 2 for each element type. In addition solar transmittance values of glazing will be selected to avail of heat gain where practical without incurring overheating issues. In order to demonstrate compliance with building regulations maximum backstop values from building regulations are also identified in this table for domestic building types. The use of high performance triple glazed windows will also be considered in any dwellings with large ratios of glazing.

Fabric Element	TGD L 2022 Domestic U-value (W/m²K)	Minimum Target U-value (W/m²K)	Compliant	
External doors	1.4	1.2	\odot	
Windows	1.4	1.3	\odot	
Roof lights	1.4	1.3	\odot	

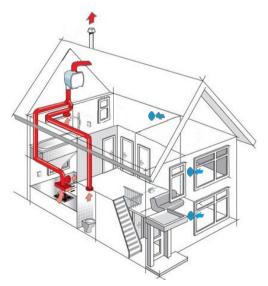
Table 2: Window & Door Area Weighted Average Elemental U-value Targets

2.3. Thermal Bridging

To avoid excessive heat losses at building junctions, reasonable care will be taken by the design team to ensure continuity of insulation and to limit local thermal bridging at key junctions, e.g. around windows, doors, other wall openings and at junctions between elements.

The dwelling types within the development will be designed by the architectural team to achieve low thermal bridging values throughout. It is intended that thermal bridging values will be determined from the results of numerical modelling carried out by a member of an approved thermal modellers scheme or equivalent for all key junctions. IT is intended that a minimum Y-value of ≤ 0.08 W/m²K is expected to be achieved.

3. Ventilation


Appropriate ventilation improves the air quality in a building which is important for both the dwelling and occupant's health. As airtightness levels of buildings are constantly improving due to newer more stringent regulations, ensuring that there is adequate purpose designed ventilation is vitally important in order to maintain indoor air quality and minimise the risk of condensation or mould growth. Any mechanical ventilation systems for each dwelling will be independently validated by a member of an approved ventilation validator scheme or equivalent.

3.1. Ventilation Method

In order to provide sufficient controlled ventilation the following ventilation system technologies are being considered for use in the Houses.

Whole House Mechanical Extract Ventilation

A centralised mechanical extract system continuously extracts moist, stale and polluted air from the wet rooms of a dwelling such as bathrooms, utility rooms and kitchens. This air is exhausted directly to external via a centralised extract fan. Supply air is provided via wall vents into habitable rooms such as bedrooms and living rooms. To meet increased extract requirements from time to time the system has a boost function which increases the air flow in the system as necessary. On activation of the boost function the system shall go into boost mode for a set period of time and reverts back to general ventilation mode automatically once this time has elapsed. Demand controlled variations of this system are also available which regulate the amount of airflow through the system based on humidity levels within a dwelling. Figure 1 shows a basic graphic representation of a MEV system.

Whole House Extract Ventilation

Figure 1: Dwelling Ventilation Methods under Consideration

3.2. Structural Air Tightness

To avoid excessive heat losses, reasonable care will be taken by the design team to limit the air permeability of the envelope of each dwelling. High levels of infiltration can contribute to uncontrolled ventilation, therefore infiltration does not provide adequate ventilation. Appropriate details and performance specification will be developed by the design team to ensure continuity of the air barrier.

Building Type	TGD L 2022 Domestic Airtightness m ³ /(hr/m ²)	Minimum Target Airtightness m³/(hr/m²)	Compliant
Dwellings	< 5	3	\odot

Table 3: Upper Limit Air Permeability Targets

It is intended that air pressure testing will be performed on all dwellings throughout the proposed development site. Proposed target levels for structural air permeability are specified in Table 3 for each dwelling. Air permeability pressure tests for each dwelling will be carried out by a member of an approved air tightness testers scheme or equivalent.

3.3. Cooking

Mechanical extract cooker hoods will generally be provided above the hob surface in each dwelling. Proposed hoods will be standard extract hoods with integrated hoods that discharge air externally in order to remove moisture and unwanted cooking odours.

4. Space Heating

Efficient space heating systems & controls will ensure greater levels of comfort for occupants and reduced energy use. As the thermal performance of building envelopes is constantly improving due to newer stringent regulations, space heating system loads are reducing which subsequently requires careful consideration and selection of appropriate systems to meet these requirements sufficiently.

4.1. Heat Source

Space heating sources will be selected on the basis of their suitability to provide efficient space heating while supporting the transition away from reliance on fossil fuels.

The following space heating technologies are being considered for use in the Houses

Air Source Heat Pumps

An air source heat pump extracts heat from the external air, increases it to a higher temperature via a compressor and then transfers this heat to the hydronic space heating system via a heat exchanger. The heat pump system uses a refrigeration cycle which has a very low boiling point and therefore heat can be extracted from external ambient air even at extremely low external air temperatures. Heat pump systems are designed to run for extended periods of time to ensure that they perform well and operate most economically. Figure 2 shows a basic graphic representation of an air source heat pump system.

Exhaust Air Heat Pumps

An exhaust air heat pump extracts heat from the exhaust air of a building through a ducted system, increases it to a higher temperature via a compressor and then can transfer this heat to the hydronic space heating system or ducted supply air system as necessary. The heat pump element of the system uses a refrigeration cycle which has a very low boiling point and therefore heat can be extracted from air even at low temperatures. Heat pump systems are designed to run for extended periods of time to ensure that they perform well and operate most economically. Figure 2 shows a basic graphic representation of an exhaust air heat pump system.

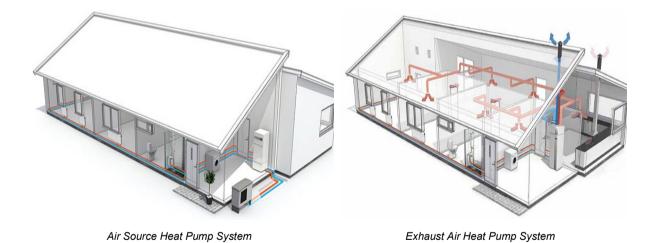


Figure 2: Dwelling Space Heating Methods under Consideration

4.2. Controls

Space heating temperature control will generally be provided on the basis of a minimum of two independent zones in dwellings. Room thermostats will be located in each zone in conjunction with a seven day time control facility.

4.3. Heat Emitters

Heat emitter types which are deemed suitable for the space heating systems outlined have been assessed. The following heat emitter types, are being considered for use in the proposed development:

Steel Panel Radiators

4.4. Pumps and Fans

All pumps and fans used in the heating & ventilation systems outlined will be low energy consumption type. Circulator pumps will have energy efficiency index ratings as per EU regulations.

Water Heating

Efficient water heating systems & controls will ensure availability of hot water on demand for occupants and reduced energy use. As the thermal performance of building envelopes is constantly improving due to newer stringent regulations, water heating system loads are increasingly becoming the most significant portion of a dwellings heating demand. This subsequently requires careful consideration and selection of appropriate systems to meet these requirements sufficiently.

5.1. Heat Source

Water heating sources will be selected on the basis of their suitability to provide efficient hot water production while supporting the transition away from reliance on fossil fuels. Hot water storage vessels shall have minimal standing losses. The following water heating technologies are being considered for use in the Houses.

Air Source Heat Pumps

An air source heat pump extracts heat from the external air, increases it to a higher temperature via a compressor and then transfers this heat to the domestic hot water cylinder system via a heat exchanger. The heat pump system uses a refrigeration cycle which has a very low boiling point and therefore heat can be extracted from external ambient air even at extremely low external air temperatures. Heat pump systems are designed to run for extended periods of time to ensure that they perform well and operate most economically.

Exhaust Air Heat Pumps

An exhaust air heat pump extracts heat from the exhaust air of a building through a ducted system, increases it to a higher temperature via a compressor and then can transfer this heat to the domestic hot water cylinder. The heat pump element of the system uses a refrigeration cycle which has a very low boiling point and therefore heat can be extracted from air even at low temperatures. Heat pump systems are designed to run for extended periods of time to ensure that they perform well and operate most economically.

5.2. Controls

The domestic hot water system will have independent time and temperature control, including a hot water cylinder thermostat and time control to optimise the time taken to heat the water. Controls will include an auxiliary heating regime to 60°C or more for disinfection purposes.

5.3. Water Usage

In order to reduce water usage and subsequent hot water demand the use of low-flow water services fittings (push- type percussion spray taps and aerated shower heads) and low consumption sanitary fittings will be reviewed. In addition the use of flow restrictors where available for water services fittings will be considered.

6. Lighting

Each dwellings will be fitted with high performance energy efficient light fittings, such as LEDs. LED lighting consumes the least amount of power while providing the highest light output, and is therefore the most efficient source of artificial light. Combined with a long lifespan this minimises whole life costs and reduces the carbon footprint of each home. LED technology results in 30-35% reduction in electrical energy usage over the CFL equivalent

The design of the building façades will allow greater levels of natural daylight to enter into occupied zones.

7. Renewable

As outlined in building regulations it is intended that a significant portion of the energy consumption to meet the energy performance of each dwelling, will be provided by renewable energy sources. For dwellings 20% of the total primary energy consumption must be provided from renewable energy technologies, in order to achieve compliance.

24768 8

7.1. Renewable Energy Source

The following renewable energy technologies are being considered for use in the Houses:

Air Source Heat Pumps

The air source heat pumps proposed for space & water heating systems are considered a renewable energy technology because they produce more energy than they consume. The renewable contribution is calculated based on the heating & hot water demand provided by the heat pump less the energy consumed by it.

Exhaust Air Heat Pumps

The exhaust air heat pumps proposed for space & water heating systems are considered a renewable energy technology because they produce more energy than they consume. The renewable contribution is calculated based on the heating & hot water demand provided by the heat pump less the energy consumed by it.

8. Building Energy Rating Results

8.1. Software Tool

In line with building regulations requirements an energy assessment procedure will be performed for each dwelling in order to ensure compliance is achieved. A dwelling energy assessment procedure will be performed for each dwelling in the development. DEAP 4.2.0 is the web-based tool which will be used for carryout out this assessment and producing domestic building energy ratings. Provisional assessments will be carried out prior to commencement of the development on site in order to ensure full compliance is achieved for each house type.

8.2. BER Targets

Expected target results of the DEAP 4 assessment for typical dwelling types are outlined in Table 4, based on the specifications outlined above. The exact specification, including technologies used, will be determined at detailed design stage. To demonstrate that an acceptable primary energy consumption rate has been achieved, the calculated Energy Performance Coefficient (EPC) of a building should be no greater than the Maximum Permitted Energy Performance Coefficient (MPEPC). To demonstrate that an acceptable CO2 emission rate has been achieved, the calculated Carbon Performance Coefficient (CPC) should be no greater than the Maximum Permitted Carbon Performance Coefficient (MPCPC).

Building Type	Rating	Energy (EPC)	Carbon (CPC)	Renewable (RER)	Compliant
Houses	BER A2	< 0.3	< 0.35	> 0.20	\odot

Table 4: Target Building Energy Rating Results