S.I. Ltd Contract No: 6380

Client: Galway County Council
Engineer: SDS Design Engineers
Contractor: Site Investigations Ltd

Cullairbaun, Athenry, Co. Galway Site Investigation Report

Prepared by:
Stephen Letch

Issue Date:	03/04/2025
Status	Final
Revision	0

<u>6380 – Cullairbaun</u> <u>Athenry, Co. Galway</u>

Contents:		Page No.
1.	Introduction	1
2.	Site Location	1
3.	Fieldwork	1
4.	Laboratory Testing	3
5.	Ground Conditions	3
6.	Recommendations and Conclusions	4

Appendices:

- 1. Cable Percussive Borehole Logs
- 2. Trial Pit Logs and Photographs
- 3. Soakaway Test Results and Photographs
- 4. Plate Test Results
- 5. Geotechnical Laboratory Test Results
- 6. Environmental Laboratory Test Results
- 7. Waste Classification Report
- 8. Survey Data

1. Introduction

On the instructions of SDS Design Engineers, Site Investigations Ltd (SIL) was appointed to complete a ground investigation at Cullairbaun, Athenry, Co. Galway. The investigation was for a residential development and was completed on behalf of the Client, Galway County Council. The fieldworks were started in October and completed in November 2024.

This report presents the factual geotechnical data obtained from the field and laboratory testing with interpretation of the ground conditions discussed.

2. Site Location

Athenry is located to the east of Galway city in the west of Ireland with Cullairbaun close to the town centre. The map on the left below shows the location of the Athenry to the east of Galway and the second map shows the location of the site in the town.

3. Fieldwork

All fieldwork was carried out in accordance with BS 5930:2015, Engineers Ireland GI Specification and Related Document 2nd Edition 2016 and Eurocode 7: Geotechnical Design. The fieldworks comprised of the following:

- 5 No. cable percussive boreholes
- 5 No. trial pits
- 4 No. soakaway tests
- 4 No. plate tests

3.1. Cable Percussive Boreholes

Cable percussion boring was undertaken at 5 No. locations using a Dando 2000 rig and constructed 200mm diameter boreholes. The boreholes terminated at shallow depths ranging from 1.70mbgl (BH04) to 2.60mbgl (BH02) after an hour and a half chiselling was completed and no further progress was made. It was not possible to collect undisturbed samples due to the granular soils encountered so bulk disturbed samples were recovered at regular intervals.

To test the strength of the stratum, Standard Penetration Tests (SPT's) were performed at 1.00m intervals in accordance with BS 1377 (1990). In soils with high gravel and cobble content it is appropriate to use a solid cone (60°) (CPT) instead of the split spoon and this was used throughout the testing. The test is completed over 450mm and the cone is driven 150mm into the stratum to ensure that the test is conducted over an undisturbed zone. The cone is then driven the remaining 300mm and the blows recorded to report the N-Value. The report shows the N-Value with the 75mm incremental blows listed in brackets (e.g., BH01 at 1.00mbgl where N=13-(1,2/2,3,4,4)). Where refusal of 50 blows across the test zone was achieved during testing, the penetration depth is also reported (e.g., BH01 at 2.00mbgl where N=50-(25 for 105mm/50 for 20mm)).

The cable percussive borehole logs are presented in Appendix 1.

3.2. Trial Pits

5 No. trial pits were excavated using a tracked excavator and they were logged and photographed by SIL geotechnical engineer. Representative disturbed bulk samples were recovered as the pits were excavated, which were returned to the laboratory for geotechnical testing.

The trial pit logs and photographs are presented in Appendix 2.

3.3. Soakaway Tests

At 4 No. locations, soakaway tests were completed and logged by SIL geotechnical engineer. BRE Special Digest 365 stipulates that the pit should be filled three times and that the final cycle is used to provide the infiltration rate. The time taken for the water level to fall from 75% volume to 25% volume is required to calculate the rate of infiltration. However, if the water level does not fall at a steady rate, then the test is deemed to have failed and the area is unsuitable for storm water drainage.

The soakaway test results and photographs are presented in Appendix 3.

3.4. Plate Tests

At 4 No. locations, plate tests were completed to provide a California Bearing Ratio value for pavement design. The tests were completed at 0.50mbgl, using the excavator as kentledge. Pressure is then added to a 600mm diameter plate, via a hydraulic jack, with the settlement of the plate measured using gauges. The rate of settlement is used to calculate the CBR value. After the test was completed, hand held shear vane tests were completed on the soil directly beneath the plate, with the results shown on the logs.

The plate test results are presented in Appendix 4.

3.5. Surveying

Following completion of all the fieldworks, a survey of the exploratory hole locations was completed using a GeoMax GPS Rover. The data is supplied on each individual log and along with a site plan in Appendix 8.

4. Laboratory Testing

Geotechnical laboratory testing was completed on representative soil samples in accordance with BS 1377 (1990). Testing included:

- 5 No. Moisture contents
- 5 No. Atterberg limits
- 5 No. Particle size gradings
- 5 No. pH, sulphate and chloride content

Environmental testing was completed by ALS Environmental Ltd. and consists of the following:

• 5 No. Suite I analysis

The geotechnical laboratory test results are presented in Appendix 5 with the environmental tests reported in Appendix 6 and a Waste Classification Report in Appendix 7.

5. Ground Conditions

5.1. Overburden

MADE GROUND was identified at 2 No. locations, TP03 and TP04, towards the centre of the site, to 0.80mbgl. This was logged as a cohesive clay soil with plastic, timber, glass and steel identified in the soil.

The natural ground conditions are generally cohesive brown (slightly) sandy (slightly) gravelly silty CLAY with cobbles overlying grey (slightly) sandy (slightly) gravelly silty CLAY with cobbles and boulders. TP04 recorded a granular GRAVEL soil from 1.00mbgl until termination of the pit at 2.20mbgl.

The SPT tests recorded values of 15 to 21 at 1.00mbgl, indicating stiff soils, and then no further full test was completed due to the boulder content and completion of the boreholes.

The laboratory tests of the cohesive soils show CLAY soils with low plasticity indexes of 9 to 14% recorded. The particle size distribution curves were poorly sorted straight-line curves with low fines content of 16% to 43% in the cohesive soils.

5.2. Groundwater

No groundwater was recorded in the boreholes or trial pits during the fieldworks.

6. Recommendations and Conclusions

Please note the following caveats:

The recommendations given, and opinions expressed in this report are based on the findings as detailed in the exploratory hole records. Where an opinion is expressed on the material between the exploratory hole locations or below the final level of excavation, this is for guidance only and no liability can be accepted for its accuracy. No responsibility can be accepted for adjacent unexpected conditions that have not been revealed by the exploratory holes. It is further recommended that all bearing surfaces when excavated should be inspected by a suitably qualified Engineer to verify the information given in this report.

Excavated surfaces in clay strata should be kept dry to avoid softening prior to foundation placement. Foundations should always be taken to a minimum depth of 0.50mBGL to avoid the effects of frost action and possible seasonal shrinkage/swelling.

If it is intended that on-site materials are to be used as fill, then the necessary laboratory testing should be specified by the Client to confirm the suitability. Also, relevant lab testing should be specified where stability of side slopes to excavations is a concern, or where contamination may be an issue.

6.1. Shallow Foundations

Due to the unknown depth of foundation and no longer-term groundwater information, this analysis assumes the groundwater will not influence the construction or performance of these foundations.

MADE GROUND was encountered at TP03 and TP04 to 0.80mbgl. SIL do not recommend that narrow shallow foundations are placed on fill material due to the unknown compaction methods used during laying of man-made material. This unknown could result in softer spots and differential settlement once construction is completed. If shallow foundations are to be used and man-made soils are encountered below foundation level, then the soil should be removed and replaced with engineered fill which is compacted to the required standard.

For cohesive soils, a correlation proposed by Stroud and Butler between SPT N-values and plasticity indices can be used to calculate the undrained shear strength. Dependent on the plasticity index at each site, the Stroud and Butler correlation is C_u =4 to 6N. With the low plasticity indexes recorded in the laboratory for the soils on this site, the correlation chosen is C_u =6N. Using the lowest value of 15, this indicates a C_u value of $90kN/m^2$. This can then be used to calculate the ultimate bearing capacity, which is the total loading that the soil could withstand and this has been calculated as $478kN/m^2$. Finally, a factor of safety is applied to ensure that failure of the soils does not occur and a factor of safety of 3 has been chosen for this site. This provides an allowable bearing capacity of $160kN/m^2$.

It would be recommended that all founding strata be inspected by a suitably qualified Engineer prior to pouring the foundations and additional insitu testing completed if required to confirm the soils are suitable for the final foundation design.

The following assumptions were made as part of these analyses. If any of these assumptions are not in accordance with detailed design or observations made during construction these recommendations should be re-evaluated.

- Foundations are to be constructed on a level formation of uniform material type.
- All man-made or filled material is to be removed prior to construction.
- The bulk unit weight of the material in this stratum has a minimum density of 19kN/m³.
- Based on groundwater observations this analysis assumes the groundwater will not influence the construction or performance of these foundations.
- All bearing capacity calculations allow for 25mm settlement.

The trial pit walls generally remained stable during excavation but it would be recommended due to the high sand and gravel content in the soils, that all excavations should be checked immediately and battered back accordingly. Regular inspection of temporary excavations should be completed during construction to ensure that all slopes are stable. Temporary support should be used on any excavation that will be left open for an extended period.

6.2. Groundwater

The caveats below relating to interpretation of groundwater levels should be noted:

There is always considerable uncertainty as to the likely rates of water ingress into excavations in clayey soil sites due to the possibility of localised unforeseen sand and gravel lenses acting as permeable conduits for unknown volumes of water.

Furthermore, water levels noted on the borehole and trial pit logs do not generally give an accurate indication of the actual groundwater conditions as the borehole or trial pit is rarely left open for sufficient time for the water level to reach equilibrium.

Also, during boring procedures, a permeable stratum may have been sealed off by the borehole casing, or water may have been added to aid drilling. Therefore, an extended period of groundwater monitoring using any constructed standpipes is required to provide more accurate information regarding groundwater conditions. Finally, groundwater levels vary with time of year, rainfall or any nearby construction sites.

Pumping tests would be required to determine likely seepage rates and persistence into excavations taken below the groundwater level. Deep trial pits also aid estimation of seepage rates.

As discussed previously, no groundwater was recorded in the boreholes and trial pits during the fieldworks.

There is always considerable uncertainty as to the likely rates of water ingress into excavations in cohesive soil sites due to the possibility of localised unforeseen sand and gravel lenses acting as permeable conduits for unknown volumes of water. Based on this information at the exploratory hole locations to date, it is considered likely that any shallow ingress (less than 2.00mbgl) into excavations of the CLAY will be slow to medium.

If groundwater is encountered during excavations then mechanical pumps will be required to remove the groundwater from sumps. Sumps should be carefully located and constructed to ensure that groundwater is efficiently removed from excavations and trenches.

6.3. Soakaway Tests

The soakaway tests failed the specification as the water level did not fall sufficiently enough to complete the test. The BRE Digest stipulates that the pit should half empty within 24hrs, and extrapolation indicates this condition would not be satisfied. The tests were terminated at the end of the first (of a possible three) fill/empty cycle since further testing would give even slower fall rates due to increased soil saturation. The unsuitability of the soils for soakaways is further

suggested by the soil descriptions of the materials in this area of the site where the soakaway was completed, i.e., well compacted cohesive soils.

6.4. Pavement Design

The plate test results in Appendix 4 recorded values of 9.7% to 13.4%.

The plate tests were completed at 0.50mbgl and inspection of the formation strata should be completed prior to construction of the pavement. Once the exact formation levels are finalised then additional in-situ testing could be completed to assist with the detailed pavement design.

6.5. Contamination

Environmental testing was carried out on five samples from the investigation and the results are shown in Appendix 6. For material to be removed from site, Suite I testing was carried out to determine if the material is hazardous or non-hazardous and then the leachate results were compared with the published waste acceptance limits of BS EN 12457-2 to determine whether the material on the site could be accepted as 'inert material' by an Irish landfill.

The Waste Classification report created using HazWasteOnline™ software shows that the material tested can be classified as non-hazardous material.

Following this analysis of the solid test results, the leachate disposal suite results indicate that the soils tested would generally be able to be treated as Inert Waste.

Five samples were tested for analysis but it cannot be discounted that any localised contamination may have been missed. Any MADE GROUND excavated on site should be stockpiled separately to natural soils to avoid any potential cross contamination of the soils. Additional testing of these soils may be requested by the individual landfill before acceptance and a testing regime designed by an environmental engineer would be recommended to satisfy the landfill.

6.6. Aggressive Ground Conditions

The chemical test results in Appendix 5 indicate a general pH value between 8.85 and 8.95, which is close to neutral and below the level of 9.

The maximum value obtained for water soluble sulphate was 126 mg/l as SO_3 . The BRE Special Digest 1:2005 – 'Concrete in Aggressive Ground' guidelines require SO_4 values and after conversion ($SO_4 = SO_3 \times 1.2$), the maximum value of 151 mg/l shows Class 1 conditions and no special precautions are required.

6.7. Radon Gas

The Environmental Protection Agency (EPA) has recently updated the Radon gas exposure map and this is available to view on the EPA website. This shows the possible exposure to radon gas with the bedrock geology, subsoil geology, soil permeability and aquifer type analysed to produce the map. The map below shows that the site falls within the high level of 1 in 5 homes are at risk of radon exposure. Measures should be taken in the form of radon protection barriers from radon exposure in the new structures.

EPA map identifying possible Radon exposure. https://gis.epa.ie/EPAMaps/Radon?&lid=EPA:RadonRiskMapoflreland

Appendix 1 Cable Percussive Borehole Logs

Contra		Cable Percussion	n Bo	orel	nole	Lo	g		В	orehole BH0		
Contrac	et:	Cullairbaun	Easting	j:	549897	7.532		Date Started:	08/11	8/11/2024		
Locatio	n:	Athenry, Co. Galway	Northin	g:	728412	2.923		Date Completed:	08/11	/2024		
Client:		Galway County Council	Elevation	on:	48.67			Drilled By:	D. Cla	arke		
Engine	ər:	SDS Design Engineers	Boreho Diamet		200mm S		Status:	FINA	L			
Depth	n (m)	Stratum Description	Legend		(mOD)	Sa	mples	and Insitu Tes	ts	Water	Backfill	
Scale	Depth	TOPSOIL.		Scale	Depth	Depth	Туре	Result		Strike		
1.0 — 2.0 — 3.5 — 3.5 — — — — — — — — — — — — — — — — — — —	0.10 0.60 2.10 2.20	Brown slightly sandy gravelly silty CLAY with high cobble content. Stiff grey brown slightly sandy gravelly silty CLAY with high cobble content. Obstruction - possible boulders. End of Borehole at 2.20m		48.5 — 48.0 — 47.5 — 47.0 — 46.5 — 45.5 — 45.0 —	48.57 48.07 46.57 46.47	1.00 1.00	вс	DC02 N=16 (2,3/4, 50 (25 fc 105mm/50 20mm) 50 (25 fc 5mm/50 for	or 0 for 0 or			
4.0				-								
- -				44.5 - - -								
4.5 —				- 44.0 — - -								
		Chiselling: Water Strikes: Water Details:	Install	ation.		Backfill:		Remarks:		Legend:		
		Doubt Hale Webs	From: To		e: From:	Backtill: To: Tyl 2.20 Aris		Remarks: forehole terminated o obstruction.	d due	B: Bulk D: Disturb U: Undistu ES: Enviro W: Water C: Cone S S: Split sp	urbed onmental SPT	

Contra		Cable Percussion	n Bo	orel	nole	Lo	g		В	orehole BH0	
Contrac	et:	Cullairbaun	Easting	j:	549873	3.782		Date Started:	09/11	/2024	
Locatio	n:	Athenry, Co. Galway	Northin	g:	72842	1.710		Date Completed:	09/11	/2024	
Client:		Galway County Council	Elevation	on:	49.17			Drilled By:	D. Cla	arke	
Engine	ər:	SDS Design Engineers	Boreho Diamet		200mm	า		Status:	FINA	L	
Depth		Stratum Description	Legend	Level	(mOD)			and Insitu Tes		Water	Backfil
Scale	Depth	TOPSOIL.		Scale	Depth	Depth	Туре	Result		Strike	
0.5 — 1.0 — 1.5 — 2.0 — 3.0 — 3.5 —	0.20 0.80 2.40 2.60	Brown slightly sandy gravelly silty CLAY with high cobble content. Stiff grey brown slightly sandy gravelly silty CLAY with high cobble content. Obstruction - possible boulders. End of Borehole at 2.60m		49.0 —	48.97 48.37 46.77 46.57	1.00 1.00 2.00 2.00	BC BC C	DC05 N=20 (2,2/3, DC05 N=50 (3,4/5 245mm 50 (25 fc 5mm/50 for	50 for 1) or		
-				45.5 - -							
4.0 —				-	-						
- - -				45.0 —	-						
4.5 — - - - -				- - 44.5 - - -							
		Chiselling: Water Strikes: Water Details:	Install	ation:		Backfill:		Remarks:		Legend:	
		Don't Usts Weter	From: To		e: From:	То: Ту		forehole terminate o obstruction.	d due	B: Bulk D: Disturb U: Undistu ES: Enviro W: Water C: Cone S S: Split sp	urbed onmental SPT

Contra		Cable Percussion	n Bo	orel	nole	Lo	g		В	orehole BH0	
Contrac	et:	Cullairbaun	Easting	j:	549879	9.267		Date Started:	09/11	/2024	
Locatio	n:	Athenry, Co. Galway	Northin	g:	728454	1.664		Date Completed:	09/11/2024		
Client:		Galway County Council	Elevation	on:	49.37			Drilled By:	D. Cla	D. Clarke	
Engine	ər:	SDS Design Engineers	Boreho Diamet		200mm	า		Status:	FINA	L	
Depth		Stratum Description	Legend	Level	(mOD)			and Insitu Tes		Water Strike	Backfil
Scale	Depth	TOPSOIL.		Scale	Depth	Depth	Туре	Result		Strike	
0.5 —	0.20	Brown slightly sandy gravelly silty CLAY with high cobble content.	20 20 20 20 20 20 20 20	- 49.0 — -	49.17						
1.0 —	0.90	Stiff grey brown slightly sandy gravelly silty CLAY with high cobble content.		- 48.5 — - -	48.47	1.00	B C	DC06 N=21 (2,2/3,			
1.5 — - - - -				48.0 — - - - 47.5 —							
2.0 —	2.10	Obstruction - possible boulders. End of Borehole at 2.30m			47.27	2.00 2.00 2.30	B C	DC07 50 (25 fo 95mm/50 10mm)	or for)		
2.5 — - -		Elid di Bolenole al 2.30111		47.0 — - - -	-			50 (25 fd 5mm/50 for			
3.0 —				46.5 -	-						
3.5 —				46.0 —	-						
4.0 —				45.5 — -							
4.5 —				45.0 —							
- - -				- 44.5 —	-						
		Chiselling: Water Strikes: Water Details: From: To: Time: Strike: Rose: Depth Sealed Date: Depth: Depth: Depth: Depth: Depth: Depth: Depth: Depth: Depth: Depth: Dry 2.10 2.30 01:30 01:30 09/11 2.30 Dry	Install		e: From:	Backfill: To: Ty 2.30 Aris		Remarks: orehole terminate o obstruction.	d due	Legend: B: Bulk D: Disturb U: Undistr ES: Envirr W: Water C: Cone S S: Split sp	urbed onmental SPT

Contra		Cable Percussion	n Bo	orel	nole	Lo	g		В	orehole BH0		
Contrac	ct:	Cullairbaun	Easting	j :	549903	3.212		Date Started:	08/11	/2024		
Locatio	n:	Athenry, Co. Galway	Northin	g:	728433	3.463		Date Completed:	08/11	08/11/2024		
Client:		Galway County Council	Elevation	on:	49.02			Drilled By:	D. Cla	arke		
Engine	er:	SDS Design Engineers	Boreho Diamet		200mm	า		Status:	FINA	L		
Depth		Stratum Description	Legend	Level	(mOD)		mples	and Insitu Tes	sts	Water	Backfill	
Scale	Depth	TOPSOIL.	~//\\\\	Scale	Depth	Depth	Туре	Result		Strike	X//XX//	
- - - 0.5 —	0.10	Brown slightly sandy gravelly silty CLAY with high cobble content.	8 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0	- - - 48.5 –	48.92							
1.0	0.90	Stiff grey brown slightly sandy gravelly silty CLAY with		- - -	48.12	1.00	D	DC01				
- - -		high cobble content.		48.0 — - - -	-	1.00	B C	N=15 (2,3/3,				
1.5 — - - -	1.60 1.70	Obstruction - possible boulders. End of Borehole at 1.70m	0	47.5 - - - -	47.42 47.32	1.70	С	50 (25 fo 5mm/50 for	or 5mm)			
2.0 —				47.0 — - -	-							
2.5 — - - -				46.5 - - -	- - - -							
3.0 —				46.0 — - -	-							
3.5 — - -				- 45.5 - - -	-							
4.0 —				45.0 — -	-							
4.5 — - -				- 44.5 - - -	- - - -							
-				-								
		Chiselling: Water Strikes: Water Details: From: To: Time: Strike: Rose: Depth Sealed Date: Depth: Depth:	Install		e: From:	Backfill: To: Tyl .70 Aris		Remarks: orehole terminate o obstruction.	d due	Legend: B: Bulk D: Disturb U: Undistr ES: Envir W: Water C: Cone S S: Split sp	urbed onmental SPT	

Contra		Cable Percussion	n Bo	orel	nole	Lo	g		В	orehole BH0		
Contrac	t:	Cullairbaun	Easting):	549840	0.317		Date Started:	10/11	10/11/2024		
Locatio	n:	Athenry, Co. Galway	Northin	g:	728437	7.364		Date Completed:	10/11	/2024		
Client:		Galway County Council	Elevation	on:	49.46			Drilled By:	D. CI	arke		
Engine	ər:	SDS Design Engineers	Boreho Diamet		200mm	า		Status:	FINA	L		
Depth		Stratum Description	Legend	Level	(mOD)			and Insitu Tes		Water	Backfil	
Scale	Depth	TOPSOIL.		Scale	Depth	Depth	Туре	Result		Strike		
1.0 — 1.5 — 2.0 — 3.5 — 4.0 — 4.0 —	0.70	Brown slightly sandy gravelly silty CLAY with high cobble content. Stiff grey brown slightly sandy gravelly silty CLAY with high cobble content. Obstruction - possible boulders. End of Borehole at 1.90m	O CHRINGHRING RELEASION RE	49.0 — 49.0 — 48.5 — 48.0 — 47.5 — 47.0 — 46.5 — 46.5 — 46.5 — 46.5 —	49.36 48.76 47.76 47.56	1.00 1.00	ВС С	DC08 N=16 (3,4/4, 50 (25 fc 5mm/50 for	or			
4.5				45.0 —								
4.5 — — — —				- - - 44.5 –	-							
		Chicalling: Water Strikes: Water Dateile:	Install	ation:	Ι.	Backfill.		Domorka		Legand:		
		Chiselling: Water Strikes: Water Details: From: To: Time: Strike: Rose: Depth Sealed Date: Depth: Depth:	Install From: To		e: From:	Backfill: To: Ty 1.90 Aris		Remarks: sorehole terminate o obstruction.	d due	Legend: B: Bulk D: Disturb U: Undistr ES: Enviro W: Water C: Cone S S: Split sp	urbed onmental SPT	

Appendix 2 Trial Pit Logs and Photographs

Contract No: 6380		Trial Pit Log												
Contract:	Cullairbaun		Ea	asting:	549913	3.247		Date:	;	31/10/2024				
Location:	Athenry, Co. Galwa	ny	N	orthing:	728417	7.282		Excavato		6T Tracked Excavator				
Client:	Galway County Co	uncil	EI	evation:	48.57			Logged B	By:	: M. Kaliski				
Engineer:	SDS Design Engine	eers		mensions xWxD) (m):	2.70 x	0.50 x	2.50	Status:		FINAL				
Level (mbgl)		Stratum Descript	1.		Legend		(mOD		les / I	Field Tests	Water			
Scale: Depth	TOPSOIL.					Scale:	Depth	: Depth	Тур	e Result	Strike			
0.5 - 0.60 - 0.60 - 1.0 - 1.5 2.20 2.20	content. Sand is fine subrounded of limes limestone. Firm light grey slightle cobble content. Sand angular to subrounded subrounded of limes. Firm becoming stiff grounded and low bould fine to coarse, angular to coarse, angular to coarse, angular to subrounded of limes.	grey slightly sandy grader content. Sand is far to subrounded of linger to sub	elly silty CLAY wirevel is fine to coarse angular to subround ravel is fine to coarse are angular to the sare angular fine to coarse. Grimestone, Cobble nestone (up to 25)	with high avel is es and		48.0 — 47.5 — 47.0 — 46.5 — 46.0 —	48.37 47.97 46.07	1.00	B B	MK05				
	Termination: Obstruction - possible boulders.	Pit Wall Stability: Pit walls stable.	Groundwater R	ate: Rema	rks:	-	-	Key: B = D =	Bulk Sma	disturbed Il disturbed isturbed CBR				

	act No: 380	Trial Pit Log										Trial Pit No: TP02			
Contr	act:	Cullairbaun		E	asting:	549884	1.776		Date:		31/	10/2024			
Locat	ion:	Athenry, Co. Galwa	у	N	orthing:	728406	6.929		Excavat	tor:	6T Tracked Excavator				
Client	t:	Galway County Cou	uncil	E	evation:	48.93			Logged	Ву:	M. Kaliski				
Engin	ieer:	SDS Design Engine	eers		mensions xWxD) (m):	2.80 x	0.50 >	2.60	Status:		FIN	FINAL			
Level	(mbgl)		Stratum Descript	1.		Legend	Level	(mOD) Sam	nples /	Fiel	d Tests	Water		
Scale:	Depth	TOPSOIL.	Otratum Descript			ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ	Scale:	Depth	n: Depth	n Ty	ре	Result	Strike		
1.5 —	1.20	Firm light brown grey cobble and low bould fine to coarse, angular boulders are angular diameter). Firm becoming stiff light cobble and low is fine to coarse, angular diameter). Obstruction - possible coarse, and the coarse are angular diameter).	ght grey slightly sand boulder content. San ular to subrounded of lime to subrounded of	dy gravelly silty of distinctions (up to 30 distinction) distinction (up to 30 distinc	exavel is es and information in the control is example. It is a second in the control is example. It is example is example in the control is example in the control is example. It is example in the control is example in the control is example in the control is example. It is example in the control in the control in the control is example in the control in the control is example in the control in the con	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	48.5 - 48.5 - 48.0 - 47.5 - 47.0 - 46.5 - 46	47.73	1.00	E	3	MK08 MK09			
		Tormination	Dit Wall Stability	Groundwater D	ate: Rema	rko	46.0 —		1/2:	,					
		Termination: Obstruction -	Pit Wall Stability: Pit walls stable.	Groundwater R Dry	ate. Remai	iks.			Key B=		k dist	turbed			
(possible boulders.	The stable.	2.3					D = CBF	Sm	all di distu	sturbed irbed CBR			

Contract No: 6380	Tria	al Pit Lo	g						Trial Pit I		
Contract:	Cullairbaun	Easting:		549894	.623		Date:	3	31/10/2024		
Location:	Athenry, Co. Galway	Northing	:	728452	2.874		Excavator		T Tracked Excavator		
Client:	Galway County Council	Elevation	n:	49.19			Logged By:		И. Kaliski		
Engineer:	SDS Design Engineers	Dimensi (LxWxD)		2.60 x	0.50 x	2.30	Status:	F	FINAL		
Level (mbgl)	Stratum Description		L	_egend	Level				ield Tests	Water Strike	
Scale: Depth	TOPSOIL.				Scale:	Depth	: Depth	Туре	e Result	Cunto	
	MADE GROUND: light brown grey slightly sand with medium cobble content and occasional plascrap metal fragments.	dy gravelly silty cla astic, timber and	ay		49.0 — 48.5 —	48.89	0.50	ES	MK01		
_	Firm grey slightly sandy gravelly silty CLAY with low boulder content. Sand is fine to coarse. Grangular to subrounded of limestone. Cobbles a angular to subrounded of limestone (up to 350)	ravel is fine to coar and boulders are	and rese, see, see, see, see, see, see, see		- - - - 48.0 —	48.39	1.00	В	MK02		
-	Firm becoming stiff grey slightly sandy gravelly cobble and boulder content. Sand is fine to coacoarse, angular to subrounded of limestone. Coarse angular to subrounded of limestone (up to a	arse. Gravel is fine obbles and boulde	to s		- - 47.5 - -	47.49					
2.0 — — — — — — — — — — — — — — — — — — —	Obstruction - possible boulders. Pit terminated at 2.30m				- 47.0 —	46.89	2.00	В	MK03		
2.5 -					- 46.5 — -						
	Termination: Pit Wall Stability: Gro	oundwater Rate: F	Remarl	ks:			Key:				
	Obstruction - possible boulders.	Dry -					B = D = CBR =	Small Undi	disturbed I disturbed sturbed CBR nmental		

	act No: 380	Trial Pit Log									Trial Pit No:			
Contra	act:	Cullairbaun		E	asting:	549869	9.253		Date:		31/10/202	4		
Locati	on:	Athenry, Co. Galway	у	N	orthing:	72844	1.571		Excavato	or:	6T Tracked Excavator			
Client	:	Galway County Cou	ıncil	E	levation:	49.43			Logged	Ву:	M. Kaliski			
Engin	eer:	SDS Design Engine	eers		imensions .xWxD) (m)	2.60 x	0.50 x	2.20	Status:		FINAL			
Level	(mbgl)		Stratum Descripti		, , ,	Legend	Level	(mOD) Sam	ples /	Field Tests			
Scale:	Depth	TOPSOIL.	·				Scale:	Depth	n: Depth	Тур	pe Resu	t Strike		
0.5 —	0.80	MADE GROUND: bromedium cobble and band glass fragments. Firm light grey sandy Sand is fine to coarse subrounded of limestone. Grey silty very sandy of limestone with med Cobbles are angular to the same same angular to the same same same same same same same sam	gravelly silty CLAY ve. Gravel is fine to coone. Cobbles are any	with high cobble parse, angular to gular to subrounde Sand is fine to c	content. ded of		49.0 — 48.5 — 48.0 — - 48.0 —	48.63	0.50	E				
2.0 —	2.20 \	Obstruction - possible	e boulders. Pit terminated at 2.20	0m			47.5 - - - 47.0 - - - - 46.5 -	47.23	2.00	B	B MK14	1		
		Termination:	Pit Wall Stability:	Groundwater R	tate: Rema	rks:			Key	<u> </u>				
		Obstruction - possible boulders.	Pit walls stable.	Dry	-				B = D = CBR	Bulk Sma	disturbed all disturbed disturbed Clonmental	BR		

Contract No: 6380		Trial Pit Log							Trial Pi			
Contract:		Cullairbaun Easting:		549846.901		Date:		31/10/2024				
Location:		Athenry, Co. Galway Northing:		728428.607				6T Tracked Excavator				
Client:		Galway County Council Elevation:		49.56 I		Logged By:		M. Kaliski				
Engineer:		SDS Design Engineers Dimensions (LxWxD) (m):		2.50 x 0.50 x 1.50		Status:		FINAL				
	(mbgl)			Legend		(mOD	.	oles /	Field Tests	Water		
Scale:	Depth	TOPSOIL.					Scale:	Depth	n: Depth	Тур	pe Result	Strike
0.5 —	0.20	Firm grey brown sligh medium cobble contectorse, angular to susubrounded of limestore light grey sandy and low boulder contectorse. Gravel is filmestone. Cobbles a limestone (up to 400r	ent. Sand is fine to co brounded of limeston one. slightly gravelly silty ent and occasional grine to coarse, angular and boulders are angu- mm diameter).	earse. Gravel is fin ne. Cobbles are ar CLAY with high co ravel laminas. San r to subrounded o	e to ngular to bbble nd is fine		49.5	49.36	0.50	ESS		
2.0 —			Pit terminated at 1.50				48.0 — 47.5 — 47.0 —					
		Termination:	Pit Wall Stability:	Groundwater Ra	te: Rema	rks:			Key:		•	
		Obstruction - possible boulders.	Pit walls stable.	Dry	-					Sma = Und	disturbed all disturbed disturbed CB onmental	R

TP01 Sidewall

TP01 Spoil

TP02 Sidewall

TP02 Spoil

TP03 Sidewall

TP03 Spoil

TP04 Sidewall

TP04 Spoil

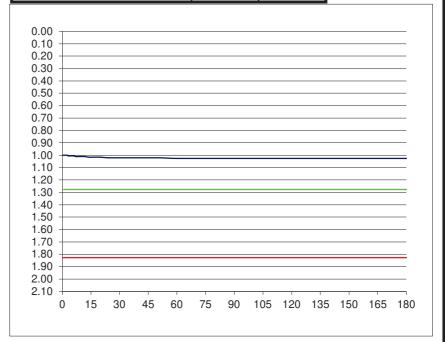
TP05 Sidewall

TP05 Spoil

Appendix 3 Soakaway Test Results and Photographs

Project Reference:	6380
Contract name:	Cullairbaun
Location:	Athenry, Co. Galway

Test No: INF01 **Date:** 31/10/2024


Ground Conditions				
From	То			
0.00	0.30	TOPSOIL.		
0.30	0.50	Firm brown slightly sandy gravelly silty CLAY with low cobble content.		
0.50	2.10	Firm becoming stiff grey slightly sandy gravelly silty CLAY with high cobble and low boulder content and occasional gravel laminas.		

0.50	2.10
Elapsed Time	Fall of Water
(mins)	(m) 1.00
0	1.00
0.5	1.00
1	1.00
1.5	1.00
2	1.00
2.5	1.00
3	1.01
3.5	1.01
4	1.01
4.5	1.01
5	1.01
6	1.01
7	1.01
8	1.01
9	1.01
10	1.01
12	1.01
14	1.02
16	1.02
18	1.02
20	1.02
25	1.02
30	1.02
40	1.02
50	1.02
60	1.03
75	1.03
90	1.03

120

180

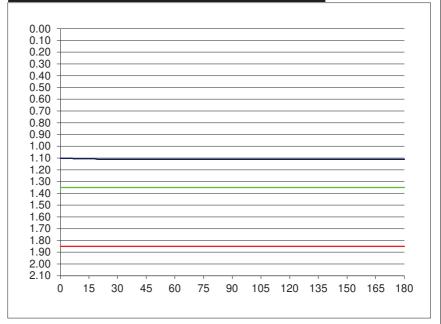
ow boulder content and occasion	mai gravei	iaminas.
Pit Dimensions (m)		
Length (m)	2.80	m
Width (m)	0.40	m
Depth	2.10	m
Water		
Start Depth of Water	1.00	m
Depth of Water	1.10	m
75% Full	1.28	m
25% Full	1.83	m
75%-25%	0.55	m
Volume of water (75%-25%)	0.62	m3
Area of Drainage	13.44	m2
Area of Drainage (75%-25%)	4.64	m2
Time		
75% Full	N/A	min
25% Full	N/A	min
Time 75% to 25%	N/A	min
Time 75% to 25% (sec)	N/A	sec

 $f = Fail \text{ or } Fail \\ m/min m/s$

1.03

Project Reference:	6380
Contract name:	Cullairbaun
Location:	Athenry, Co. Galway

Test No: INF02
Date: 31/10/2024


Dato.		01/10/2021			
Ground Conditions					
From	То				
0.00	0.20	TOPSOIL.			
0.20	0.60	Firm brown slightly sandy slightly gravelly silty CLAY with low cobble and boulder content.			
0.60	2.10	Firm becoming stiff grey slightly sandy gravelly silty CLAY with high cobble content.			

0.00	2.10
Elapsed Time	Fall of Water
(mins)	(m)
0	1.10
0.5	1.10
1	1.10
1.5	1.10
2	1.10
2.5	1.10
3	1.10
3.5	1.10
4	1.10
4.5	1.10
5	1.10
6	1.10
7	1.11 1.11
8	
9	1.11
10	1.11
12	1.11
14	1.11
16	1.11
18	1.11
20	1.11
25	1.11
30	1.11
40	1.11
50	1.11
60	1.11
75	1.11
90	1.11

120

180

:: II.		
Pit Dimensions (m)		
Length (m)	2.90	m
Width (m)	0.40	m
Depth	2.10	m
Water		
Start Depth of Water	1.10	m
Depth of Water	1.00	m
75% Full	1.35	m
25% Full	1.85	m
75%-25%	0.50	m
Volume of water (75%-25%)	0.58	m3
Area of Drainage	13.86	m2
Area of Drainage (75%-25%)	4.46	m2
Time		
75% Full	N/A	min
25% Full	N/A	min
Time 75% to 25%	N/A	min
Time 75% to 25% (sec)	N/A	sec

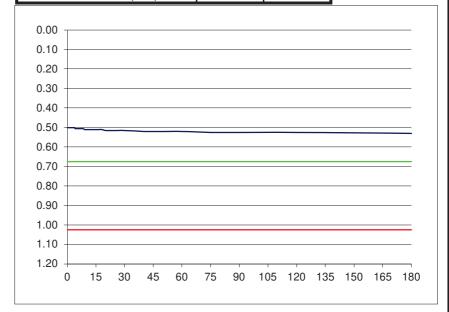
f = Fail or Fail m/min

1.11

Project Reference:	6380
Contract name:	Cullairbaun
Location:	Athenry, Co. Galway
	IN LEGO

 Test No:
 INF03

 Date:
 31/10/2024


		9 11 1 9 1 9 1 9 1			
Ground Conditions					
From	То				
0.00	0.10	TOPSOIL.			
0.10	0.50	MADE GROUND: grey brown slightly sandy gravelly silty clay with high cobble content and some timber and scrap metal fragments.			
0.50	1.20	Firm grey slightly sandy gravelly silty CLAY with high cobble and medium boulder content.			
1.20		Obstruction - possible boulders.			

1.20	
Elapsed Time	Fall of Water
(mins) 0	(m) 0.50
0.5	0.50
1	0.50
1.5	0.50
2	0.50
2.5	0.50
3	0.50
3.5	0.50
4	0.51
4.5	0.51
5	0.51
6	0.51
7	0.51
8	0.51
9	0.51
10	0.51
12	0.51
14	0.51
16	0.51
18	0.51
20	0.52
25	0.52
30	0.52
40	0.52
50	0.52
60	0.52
75	0.53
90	0.53

120

180

ruction - possible boulders.		
Pit Dimensions (m)		
Length (m)	2.60	m
Width (m)	0.40	m
Depth	1.20	m
Water		
Start Depth of Water	0.50	m
Depth of Water	0.70	m
75% Full	0.68	m
25% Full	1.03	m
75%-25%	0.35	m
Volume of water (75%-25%)	0.36	m3
Area of Drainage	7.20	m2
Area of Drainage (75%-25%)	3.14	m2
Time		
75% Full	N/A	min
25% Full	N/A	min
Time 75% to 25%	N/A	min
Time 75% to 25% (sec)	N/A	sec

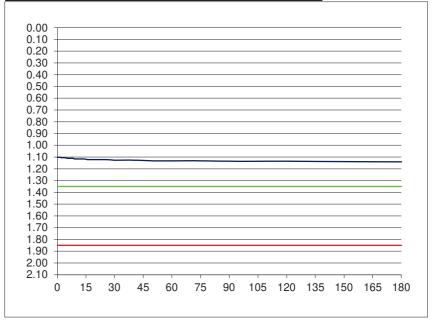
f = Fail or Fail m/min

0.53

Project Reference:	6380
Contract name:	Cullairbaun
Location:	Athenry, Co. Galway
T . N.	INIEG 4

Test No: INF04

Date: 31/10/2024


Dato.		01/10/2021		
Ground Conditions				
From	То			
0.00	0.20	TOPSOIL.		
0.20	0.80	Firm brown grey slightly sandy gravelly silty CLAY with medium cobble content.		
0.80	2.10	Firm becoming stiff grey slightly sandy gravelly silty CLAY with high cobble and low boulder content.		

0.80	2.10
Elapsed Time	Fall of Water
(mins)	(m)
0	1.10
0.5	1.10
1	1.10
1.5	1.10
2	1.11
2.5	1.11
3	1.11
3.5	1.11
4	1.11
4.5	1.11
5	1.11
6	1.11 1.11
7	
8	1.11
9	1.12 1.12
10	
12	1.12
14	1.12
16	1.12
18	1.12
20	1.12
25	1.12
30	1.13
40	1.13
50	1.13
60	1.13
75	1.13
90	1.14

120

180

ow boulder content.				
Pit Dimensions (m)				
Length (m)	2.60	m		
Width (m)	0.40	m		
Depth	2.10	m		
Water				
Start Depth of Water	1.10	m		
Depth of Water	1.00	m		
75% Full	1.35	m		
25% Full	1.85	m		
75%-25%	0.50	m		
Volume of water (75%-25%)	0.52	m3		
Area of Drainage	12.60	m2		
Area of Drainage (75%-25%)	4.04	m2		
Time				
75% Full	N/A	min		
25% Full	N/A	min		
Time 75% to 25%	N/A	min		
Time 75% to 25% (sec)	N/A	sec		

 $f = Fail \text{ or } Fail \\ m/min m/s$

1.14

INF1 Sidewall

INF1 Spoil

INF2 Sidewall

INF2 Spoil

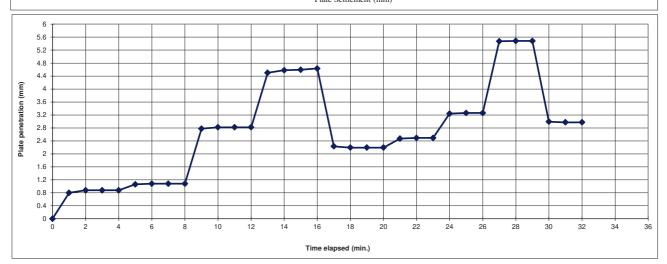
INF3 Sidewall

INF3 Spoil

INF4 Sidewall

INF4 Spoil

Appendix 4 Plate Test Results

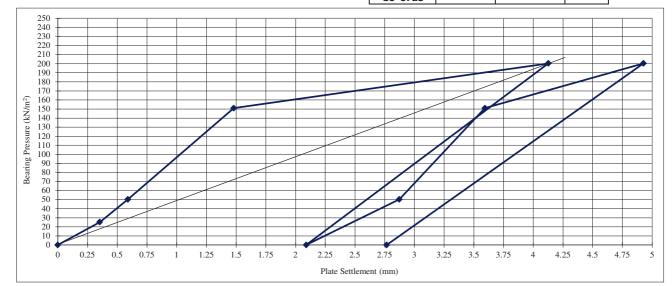

Site Investigations Ltd., Carhugar The Grange, 12th Lock Road, Lucan, Co. Dublin Tel: 01 6108768 Email:info@siteinvestigations.ie

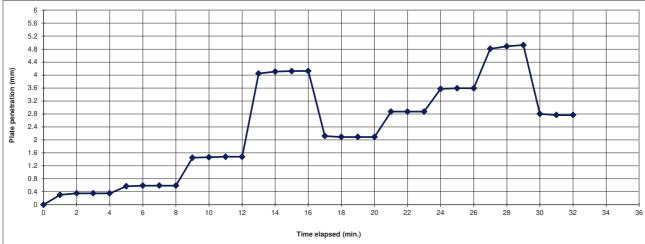
Client	Galway Cour	ty Council		
Site	Cullairbaun,	Cullairbaun, Athenry		
Test Date	07-Nov-24			
Location:	PT01	PT01		
Plate Diameter: 600mm				
Type of reac	Type of reaction Load 13tonne tracked excavator			
Material Type: slightly sandy slightly gravelly silty CLA			tly gravelly silty CLAY	
E	Depth test carried out: 0.50m BGL			
CBR value is as per specification for 762mm Plate				

1.25mm settlement (graph) for 762mm Plate (kPa)	54
Equivalent CBR Value-Initial loading (%)	9.7
Mod. of subgrade Reaction k for 600mm Plate(kPa)	46
Correction factor for 600mm Plate	0.85

Pressure Stages	Bearing Pressure (kN/m²)	Plate Settlement (mm)	
Initial	0.0	0.00	
	25	0.88	
	50	1.08	
	151	2.82	
	200	4.63	
	0.0	2.19	
Reload	50	2.49	
	151	3.26	
	200	5.48	
Final Condition	0.0	2.97	
ITM	Easting	Northing	Level
Co-ords			

250 240 230 220 210 200 190 180 150 140 130 120 90 80 70 60 50 40 30 20 0 Bearing Pressure (kN/m2) 0.25 0.5 0.75 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4 4.25 4.5 4.75 5.25 5.5 5.75 Plate Settlement (mm)

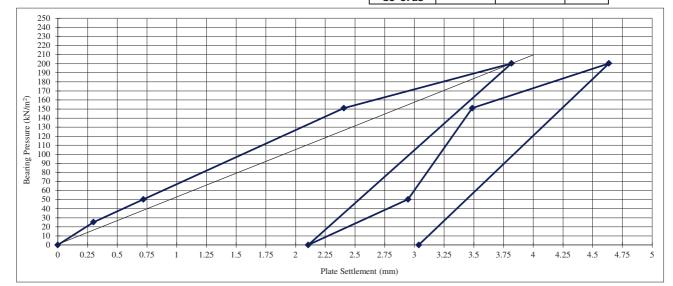

04/12/2024 _____Site Investigatins Ltd.

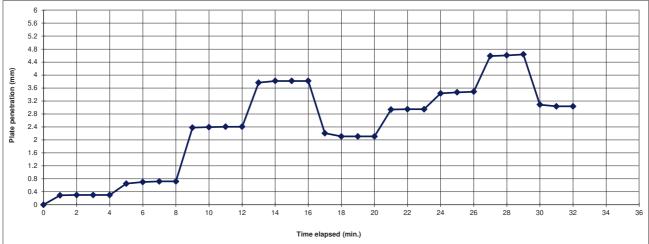

Site Investigations Ltd., Carhugar The Grange, 12th Lock Road, Lucan, Co. Dublin Tel: 01 6108768 Email:info@siteinvestigations.ie

Client	Galway Cour	ity Council		
Site	Cullairbaun,	Cullairbaun, Athenry		
Test Date	07-Nov-24			
Location:	PT02	PT02		
Plate Diameter: 600mm				
Type of reaction Load 13tonne tracked excavator			ked excavator	
Material Type: slightly sandy slightly gravelly silty C		tly gravelly silty CLAY		
Depth test carried out: 0.5			0.50m BGL	
CBR value is as per specification for 762mm Plate				

1.25mm settlement (graph) for 762mm Plate (kPa)	61
Equivalent CBR Value-Initial loading (%)	12.0
Mod. of subgrade Reaction k for 600mm Plate(kPa)	52
Correction factor for 600mm Plate	0.85

Pressure Stages	Bearing Pressure (kN/m²)	Plate Settlement (mm)
Initial	0.0	0.00
	25	0.35
	50	0.59
	151	1.48
	200	4.13
	0.0	2.09
Reload	50	2.87
	151	3.59
	200	4.93
Final Condition	0.0	2.77
ITM	Easting	Northing
Co-ords		

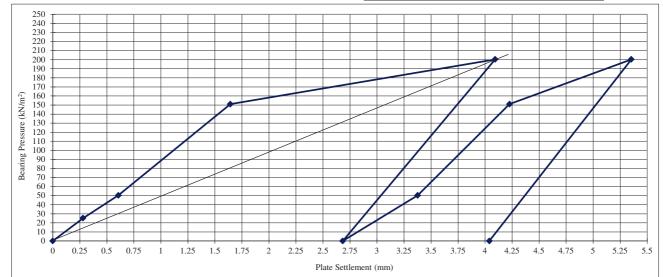

04/12/2024 ______Site Investigatins Ltd.

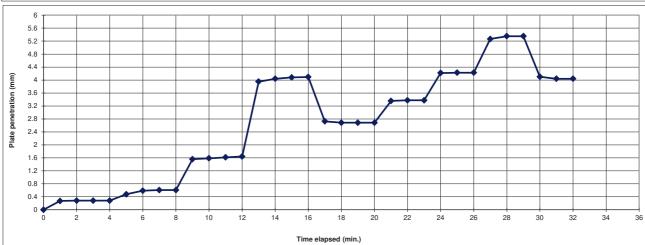

Site Investigations Ltd., Carhugar The Grange, 12th Lock Road, Lucan, Co. Dublin Tel: 01 6108768 Email:info@siteinvestigations.ie

Client	Galway Cour	ity Council		
Site	Cullairbaun,	Athenry		
Test Date	07-Nov-24			
Location:	PT03	PT03		
Plate Diameter: 600mm				
Type of reaction Load 13tonne tracked excavator			ked excavator	
Material Type: slightly sandy slightly gravelly silty C			tly gravelly silty CLAY	
Depth test carried out:			0.50m BGL	
CBR value is as per specification for 762mm Plate				

1.25mm settlement (graph) for 762mm Plate (kPa)	65
Equivalent CBR Value-Initial loading (%)	13.4
Mod. of subgrade Reaction k for 600mm Plate(kPa)	55
Correction factor for 600mm Plate	0.85

Pressure Stages	Bearing Pressure (kN/m²)	Plate Settlement (mm)
Initial	0.0	0.00
	25	0.30
	50	0.72
	151	2.41
	200	3.82
	0.0	2.11
Reload	50	2.95
	151	3.49
	200	4.64
Final Condition	0.0	3.04
ITM	Easting	Northing
Co-ords		


04/12/2024 ______Site Investigatins Ltd.


Site Investigations Ltd., Carhugar The Grange, 12th Lock Road, Lucan, Co. Dublin Tel: 01 6108768 Email:info@siteinvestigations.ie

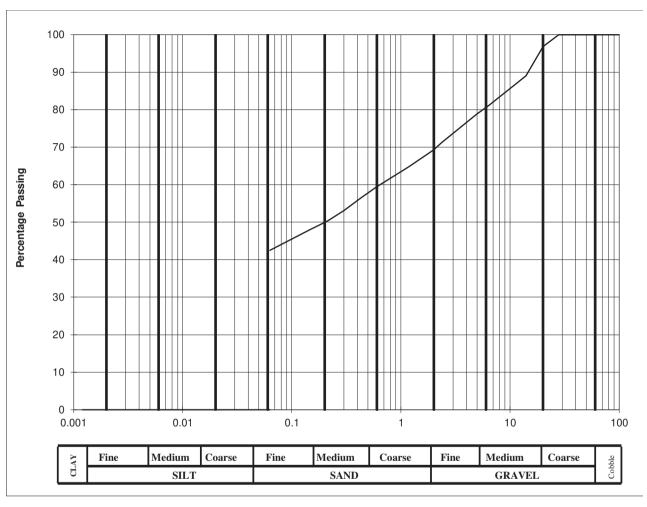
Client	Galway Cour	ty Council		
Site	Cullairbaun,	Athenry		
Test Date	07-Nov-24			
Location:	PT04	PT04		
Plate Diameter: 600mm				
Type of reac	Type of reaction Load 13tonne tracked excavator			
Material Type: slightly sandy slightly gravelly silty CL			tly gravelly silty CLAY	
Depth test carried out: 0.50m BGL				
CBR value is as per specification for 762mm Plate				

1.25mm settlement (graph) for 762mm Plate (kPa)	61
Equivalent CBR Value-Initial loading (%)	12.0
Mod. of subgrade Reaction k for 600mm Plate(kPa)	52
Correction factor for 600mm Plate	0.85

Pressure Stages	Bearing Pressure (kN/m²)	Plate Settlement (mm)	
Initial	0.0	0.00	
	25	0.28	
	50	0.61	
	151	1.64	
	200	4.09	
	0.0	2.68	
Reload	50	3.38	
	151	4.23	
	200	5.35	1
Final Condition	0.0	4.04	
ITM	Easting	Northing	Level
Co-ords			

04/12/2024 _____Site Investigatins Ltd.

Appendix 5 Geotechnical Laboratory Test Results


Classification Tests In accordance with BS 1377: Part 2

Client	Galway County Council
Site	Cullairbaun, Athenry
S.I. File No	6380 / 24
Test Lab	Site Investigations Ltd., Carhugar The Grange, 12th Lock Rd., Lucan Co. Dublin. Tel (01) 6108768 Email:info@siteinvestigations.ie
Report Date	18th November 2024

Hole ID	Depth	Sample	Lab Ref	Sample	Natural	Liquid	Plastic	Plastic	Bulk	Specific	%	Comments	Remarks C=Clay; M=Silt
		No	No.	Type	Moisture	Limit	Limit	Index	Density	gravity	passing		Plasticity: L=Low;
					Content	%	%	%	g/cm ³		425um		I=Intermediate; H=High;
					%				C				V=Very High; E=Extremely
													High
TP01	1.00	MK05	24/1684	В	10.2	33	19	14			56.3		CL
TP02	1.00	MK08	24/1685	В	9.0	32	19	13			47.0		CL
TP03	1.00	MK02	24/1686	В	8.0	29	20	9			44.1		CL
TP04	1.00	MK13	24/1687	В	8.9	30	20	10		·	37.4		CL
TP05	1.00	MK11	24/1688	В	9.0	32	19	13			50.0		CL

BS Sieve	Percent	Hydrometer	analysis
size, mm	passing	Diameter, mm	% passing
100	100	0.0630	
90	100	0.0200	
75	100	0.0060	
63	100	0.0020	
50	100		
37.5	100		
28	100		
20	96.8		
14	89		
10	85.6		
6.3	81		
5.0	78.9		
2.36	71.2		
2.00	69.3		
1.18	64.8		
0.600	59.4		
0.425	56.3		
0.300	53.1		
0.212	50.3		
0.150	48.1		
0.063	43		

Cobbles, %	0
Gravel, %	31
Sand, %	26
Clay / Silt, %	43

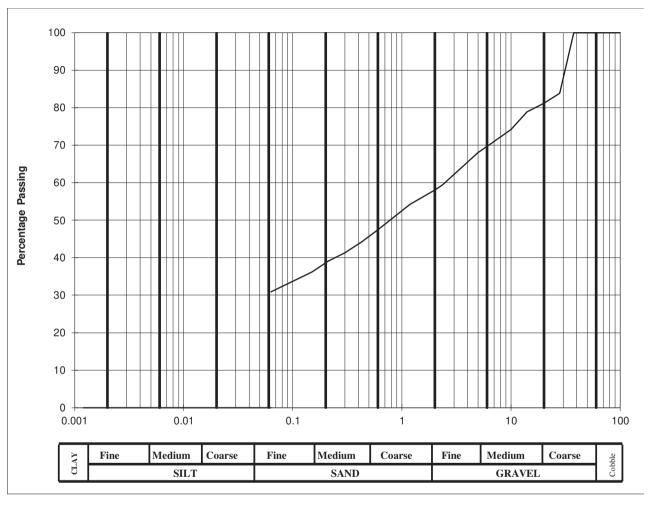


Client:	Galway Council	Lab. No:	24/1684	Hole ID:	TP 01
Project:	Cullairbaun, Athenry	Sample No:	MK05	Depth, m:	1.00

Material description:	slightly sandy slightly gravelly silty CLAY
	Soils with clay or silt content between 15% - 35% can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour.
Remarks:	Where material is for re-use and therefore disturbed, only soils with clay or silt >35% are classified as clay or silt

BS Sieve	Percent	Hydrometer	analysis
size, mm	passing	Diameter, mm	% passing
100	100	0.0630	
90	100	0.0200	
75	100	0.0060	
63	100	0.0020	
50	100		
37.5	100		
28	88.7		
20	85		
14	78.4		
10	76.3		
6.3	70.2		
5.0	67.9		
2.36	59.5		
2.00	58.3		
1.18	54.2		
0.600	49.5		
0.425	47		
0.300	45		
0.212	43.2		
0.150	41.2		
0.063	36		

Cobbles, %	0
Gravel, %	42
Sand, %	22
Clay / Silt, %	36

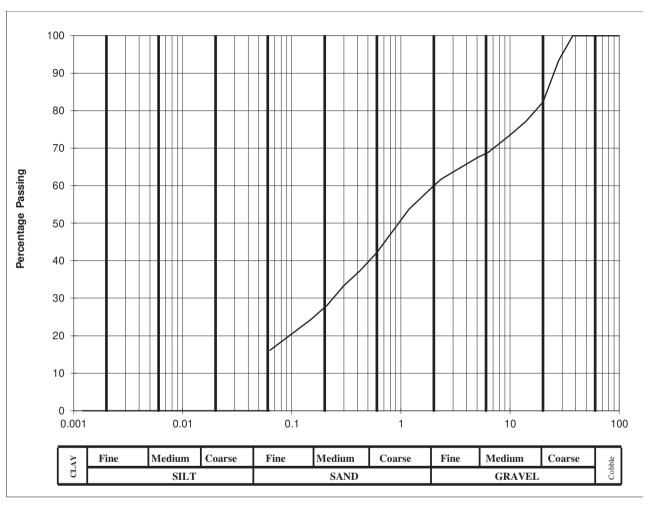


Client:	Galway Council	Lab. No:	24/1685	Hole ID :	TP 02
Project:	Cullairbaun, Athenry	Sample No:	MK08	Depth, m:	1.00

Material description:	slightly sandy gravelly silty CLAY
Domontro	Soils with clay or silt content between 15% - 35% can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour.
Remarks :	Where material is for re-use and therefore disturbed, only soils with clay or silt >35% are classified as clay or silt

BS Sieve	Percent	Hydrometer	analysis
size, mm	passing	· ·	1
		Diameter, mm	% passing
100	100	0.0630	
90	100	0.0200	
75	100	0.0060	
63	100	0.0020	
50	100		
37.5	100		
28	83.8		
20	81.2		
14	78.9		
10	74.2		
6.3	70.1		
5.0	68		
2.36	59.4		
2.00	58		
1.18	54.2		
0.600	47.4		
0.425	44.1		
0.300	41.3		
0.212	39.1		
0.150	36.2		
0.063	31		

Cobbles, %	0
Gravel, %	42
Sand, %	27
Clay / Silt, %	31

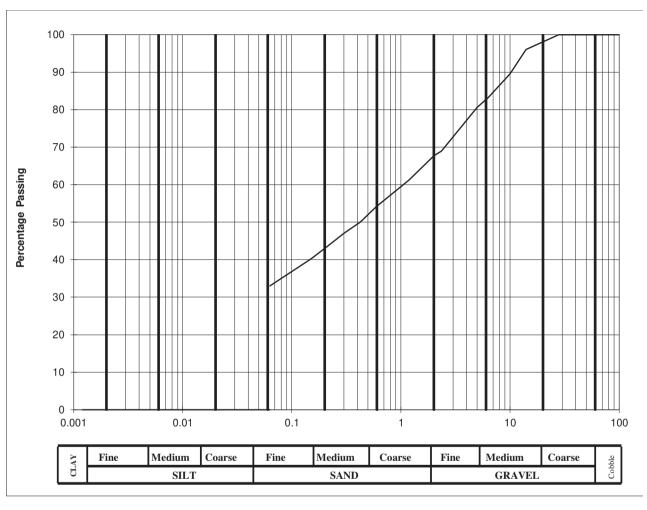


Client:	Galway Council	Lab. No:	24/1686	Hole ID :	TP 03.
Project:	Cullairbaun, Athenry	Sample No:	MK02	Depth, m:	1.00

Material description :	slightly sandy gravelly silty CLAY
Remarks:	Soils with clay or silt content between 15% - 35% can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour.
Kemarks.	Where material is for re-use and therefore disturbed, only soils with clay or silt >35% are classified as clay or silt

BS Sieve	Percent	Hydrometer	analysis
size, mm	passing	Diameter, mm	% passing
100	100	0.0630	
90	100	0.0200	
75	100	0.0060	
63	100	0.0020	
50	100		
37.5	100		
28	93.4		
20	82.3		
14	77.2		
10	73.5		
6.3	68.9		
5.0	67.4		
2.36	61.8		
2.00	60		
1.18	53.7		
0.600	42.1		
0.425	37.4		
0.300	33.4		
0.212	28.2		
0.150	24.3		
0.063	16		

Cobbles, %	0
Gravel, %	40
Sand, %	44
Clay / Silt, %	16



Client:	Galway County Council	Lab. No:	24/1687	Hole ID :	TP 04
Project:	Cullairbaun, Athenry	Sample No:	MK13	Depth, m:	1.00

Material description:	sandy gravelly silty CLAY
	Soils with clay or silt content between 15% - 35% can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour.
Remarks :	Where material is for re-use and therefore disturbed, only soils with clay or silt >35% are classified as clay or silt

BS Sieve	Percent	Hydrometer	analysis
size, mm	passing	Diameter, mm	% passing
100	100	0.0630	
90	100	0.0200	
75	100	0.0060	
63	100	0.0020	
50	100		
37.5	100		
28	100		
20	98.1		
14	96		
10	89.5		
6.3	83.2		
5.0	80.6		
2.36	69		
2.00	67.7		
1.18	61.2		
0.600	54.2		
0.425	50		
0.300	47		
0.212	43.5		
0.150	40.2		
0.063	33		

Cobbles, %	0
Gravel, %	32
Sand, %	35
Clay / Silt, %	33

Client:	Galway Council	Lab. No:	24/1688	1	Hole ID :	TP 05
Project:	Cullairbaun, Athenry	Sample No:	MK11	i	Depth, m:	1.00

Material description:	sandy slightly gravelly silty CLAY
Soils with clay or silt content between 15% - 35% can be classified as clay or silt depending on the field Engineers assessment of in-situ beha	Soils with clay or silt content between 15% - 35% can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour.
Remarks:	Where material is for re-use and therefore disturbed, only soils with clay or silt >35% are classified as clay or silt

Chemical Testing In accordance with BS 1377: Part 3

Client	Galway County Council
Site	Cullairbaun, Athenry
S.I. File No	6380 / 24
Test Lab	Site Investigations Ltd., Carhugar The Grange, 12th Lock Rd., Lucan Co. Dublin. Tel (01) 6108768 Email:info@siteinvestigations.ie
Report Date	18th November 2024

Hole Id	Depth	Sample	Lab Ref	pН	Water Soluble	Water Soluble	Acid Soluble	Acid Soluble	Chloride	% passing
	(mBGL)	No		Value	Sulphate Content	Sulphate Content	Sulphate Content	Sulphate Content	ion	2mm
					(2:1 Water-soil	(2:1 Water-soil	(2:1 Water-soil	(2:1 Water-soil	Content	
					extract) (SO ₃)	(water:soil				
					g/L	%	g/L	%	ratio 2:1)	
					_		_		%	
TP01	1.00	MK05	24/1684	8.94	0.126	0.087			0.25	69.3
TP02	1.00	MK08	24/1685	8.93	0.119	0.069			0.18	58.3
TP03	1.00	MK02	24/1686	8.89	0.120	0.070			0.27	58.0
TP04	1.00	MK13	24/1687	8.85	0.117	0.070			0.28	60.0
TP05	1.00	MK11	24/1688	8.95	0.124	0.084			0.21	67.7

Appendix 6 Environmental Laboratory Test Results

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside CH5 3US

Tel: (01244) 528777

email: hawardencustomerservices@alsglobal.com Website: www.alsenvironmental.co.uk

Site Investigations Ltd The Grange Carhugar 12th Lock Road Lucan Co. Dublin

Attention: Stephen Letch

CERTIFICATE OF ANALYSIS

Date of report Generation: 15 November 2024 **Customer:** Site Investigations Ltd

Sample Delivery Group (SDG): 241107-102

Your Reference: 6380

Location: CULLAIRBAUN, ATHENRY C.GALWAY

 Report No:
 746801

 Order Number:
 40/B/24

We received 5 samples on Thursday November 07, 2024 and 5 of these samples were scheduled for analysis which was completed on Friday November 15, 2024. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALS Laboratories (UK) Limited Hawarden.

All sample data is provided by the customer. The reported results relate to the sample supplied, and on the basis that this data is correct.

Incorrect sampling dates and/or sample information will affect the validity of results.

The customer is not permitted to reproduce this report except in full without the approval of the laboratory.

Approved By:

Lauren Ellis

X selles

General Manager Western Europe Environmental

ALS Laboratories (UK) Limited. Registered Office: Torrington Avenue, Coventry CV4 9GU. Registered in England and Wales No. 02391955.

Version: 3.7 Version Issued: 24/07/2024

Validated

SDG: 241107-102 Client Ref.: 6380 Report Number: 746801 Superseded Report: Location: CULLAIRBAUN, ATHENRY C.GALWAY

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
30629606	TP 01		0.50 - 0.50	05/11/2024
30629608	TP 02		0.50 - 0.50	05/11/2024
30629609	TP 03		0.50 - 0.50	05/11/2024
30629610	TP 04		0.50 - 0.50	05/11/2024
30629611	TP 05		0.50 - 0.50	05/11/2024

Only received samples which have had analysis scheduled will be shown on the following pages.

SDG: 241107-102 Client Ref.: 6380 Report Number: 746801 Superseded Report: Location: CULLAIRBAUN, ATHENRY C.GALWAY

							0	U		,				ALW	,		
Results Legend X Test	Lab Sample	No(s)			30629606			30629608			30629609			30629610			11962908
No Determination Possible)6)9			0			Ξ
Savala Tara	Custom Sample Refe				TP 01			TP 02			TP 03			TP 04			TP 05
Sample Types - S - Soil/Solid UNS - Unspecified Solid GW - Ground Water SW - Surface Water LE - Land Leachate	AGS Refer	ence															
PL - Prepared Leachate PR - Process Water SA - Saline Water TE - Trade Effluent TS - Treated Sewage US - Untreated Sewage	Depth (r	n)			0.50 - 0.50			0.50 - 0.50			0.50 - 0.50			0.50 - 0.50			0.50 - 0.50
RE - Recreational Water DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge G - Gas OTH - Other	Contain	er	1 kg TUB with Handle (ALE260)	250g Amber Jar (ALE210)	60g VOC (ALE215)	1 kg TUB with Handle (ALE260)	250g Amber Jar (ALE210)	60g VOC (ALE215)	1 kg TUB with Handle (ALE260)	250g Amber Jar (ALE210)	60g VOC (ALE215)	1 kg TUB with Handle (ALE260)	250g Amber Jar (ALE210)	60g VOC (ALE215)	1 kg TUB with Handle (ALE260)	250g Amber Jar (ALE210)	60g VOC (ALE215)
	Sample T	ype	S	S		S	S	S	S	S	S	S	S	S	S	S	S
Anions by Kone (w)	All	NDPs: 0 Tests: 5	Х			Х			Х			X			Х		
CEN Readings	All	NDPs: 0 Tests: 5	X			Х			Х			Х			X		
Chromium III	All	NDPs: 0 Tests: 5		X			X			X			X			X	
Coronene	All	NDPs: 0 Tests: 5		X			X			X			X			X	
Dissolved Metals by ICP-MS	All	NDPs: 0 Tests: 5	X			X			X			Х			X		
Dissolved Organic/Inorganic Carbon	All	NDPs: 0 Tests: 5	X			X			Х			Х			Х		
EPH by GCxGC-FID	All	NDPs: 0 Tests: 5		X			Х			X			Х			X	
EPH CWG GC (S)	All	NDPs: 0 Tests: 5		X			X			X			X			Х	
Fluoride	All	NDPs: 0 Tests: 5	Х			X			Х			X			X		
GRO by GC-FID (S)	All	NDPs: 0 Tests: 5			Х			X			Х			X			X
Hexavalent Chromium (s)	All	NDPs: 0 Tests: 5		X			Х			X			Х			X	
Loss on Ignition in soils	All	NDPs: 0 Tests: 5		X			X			X			X			X	
Mercury Dissolved	All	NDPs: 0 Tests: 5	X			Х			X			X			Х		
Metals in solid samples by OES	All	NDPs: 0 Tests: 5		X			Х			X			Х			X	
PAH 16 & 17 Calc	All	NDPs: 0 Tests: 5		X			X			X			X			Х	

SDG: 241107-102 Client Ref.: 6380 Report Number: 746801 Superseded Report: Location: CULLAIRBAUN, ATHENRY C.GALWAY

Chefit Kei.	-				LUC	utio		O LL	(II(D)	1011,	/ \	LIVIX		JALW	,, , , ,		
Results Legend X Test No Determination	Lab Sample	No(s)			30629606			30629608			30629609			30629610			30629611
Possible Sample Types -	Custom Sample Refe				TP 01			TP 02			TP 03			TP 04			TP 05
S - Soil/Solid UNS - Unspecified Solid GW - Ground Water SW - Surface Water LE - Land Leachate	AGS Refer	ence															
PL - Prepared Leachate PR - Process Water SA - Saline Water TE - Trade Effluent TS - Treated Sewage US - Untreated Sewage	Depth (r	n)			0.50 - 0.50			0.50 - 0.50			0.50 - 0.50			0.50 - 0.50			0.50 - 0.50
RE - Recreational Water DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge G - Gas OTH - Other	Contain	er	1 kg TUB with Handle (ALE260)	250g Amber Jar (ALE210)	60g VOC (ALE215)	1 kg TUB with Handle (ALE260)	250g Amber Jar (ALE210)	60g VOC (ALE215)	1 kg TUB with Handle (ALE260)	250g Amber Jar (ALE210)	60g VOC (ALE215)	1 kg TUB with Handle (ALE260)	250g Amber Jar (ALE210)	60g VOC (ALE215)	1 kg TUB with Handle (ALE260)	250g Amber Jar (ALE210)	60g VOC (ALE215)
	Sample T	ype	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S
PAH by GCMS	All	NDPs: 0 Tests: 5		X			Х			X			X			Х	
PCBs by GCMS	All	NDPs: 0 Tests: 5		Х			Х			Х			Х			Х	
рН	All	NDPs: 0 Tests: 5		X			Х			Х			Х			Х	
pH Value of Filtered Water	All	NDPs: 0 Tests: 5	Х			X			X			X			X		
Phenols by HPLC (W)	All	NDPs: 0 Tests: 5	Х			Х			X			Х			Х		
Sample description	All	NDPs: 0 Tests: 5		X			Х			Х			X			X	
Total Organic Carbon	All	NDPs: 0 Tests: 5		X			Х			Х			Х			Х	
TPH CWG GC (S)	All	NDPs: 0 Tests: 5		Х			X			Х			Х			Х	
VOC MS (S)	All	NDPs: 0 Tests: 5			X			X			X			Х			X

SDG: 241107-102 **Client Ref.:** 6380

Report Number: 746801 Superseded Report: Location: CULLAIRBAUN, ATHENRY C.GALWAY

Sample Descriptions

Grain Sizes

very fine	<0.0	63mm	fine 0	.063mm - 0.1mm	medium	0.1mm	ı - 2mm	coars	se 2mr	m - 10mm	very coa	irse	>10mm
Lab Sample	No(s)	Custome	er Sample Re	ef. Depth (m)	Col	our	Descript	tion	Inclusion	ns Incl	usions 2		
3062960)6		TP 01	0.50 - 0.50	Dark	Brown	Sandy Lo	am	Stones	Ve	getation		
3062960)8		TP 02	0.50 - 0.50	Dark	Brown	Loamy Sa	and	Stones	Ve	getation		
3062960	9		TP 03	0.50 - 0.50	Dark	Brown	Loamy Sa	and	Stones	Ve	getation		
3062961	0		TP 04	0.50 - 0.50	Dark	Brown	Silty Clay L	oam	None	Ve	getation		
3062961	1		TP 05	0.50 - 0.50	Dark	Brown	Loamy Sa	and	Stones	Ve	getation		

These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally ocurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

SDG: 241107-102 Client Ref.: 6380 Report Number: 746801 Superseded Report:
Location: CULLAIRBAUN, ATHENRY C.GALWAY

Results Legend	Cue	tomer Sample Ref.	TP 01	TP 02	TP 03	TP 04	TP 05	
# ISO17025 accredited. M mCERTS accredited.	Cus	tomer Sample Kei.	17 01	17 02	12 03	IP 04	17 05	
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. tot.unfiltTotal / unfiltered sample.		Depth (m) Sample Type	0.50 - 0.50 Soil/Solid (S)	0.50 - 0.50 Soil/Solid (S)	0.50 - 0.50 Soil/Solid (S)	0.50 - 0.50	0.50 - 0.50 Soil/Solid (S)	
 Subcontracted - refer to subcontractor reports accreditation status. 		Date Sampled	05/11/2024	05/11/2024	05/11/2024	Soil/Solid (S) 05/11/2024	05/11/2024	
** % recovery of the surrogate standard to che efficiency of the method. The results of indi compounds within samples aren't corrected	vidual	Sample Time Date Received	07/11/2024	07/11/2024	07/11/2024	07/11/2024	07/11/2024	
recovery (F) Trigger breach confirmed		SDG Ref ab Sample No.(s)	241107-102 30629606	241107-102 30629608	241107-102 30629609	241107-102 30629610	241107-102 30629611	
1-4+§@Sample deviation (see appendix) Component	LOD/Units	AGS Reference Method						
Moisture Content Ratio (% of as received sample)	%	PM024	13	9.4	16	16	11	
Loss on ignition	<0.7 %	TM018	3.12	2.09	3.9	5.57	2.15	
Organic Carbon, Total	<0.2 %	TM132	0.471	0.479	1.06	0.724	0.506	
Organic Carbon, Total	~ 0.2 %	1101132	0.47 T		1.00 M	0.724 M	0.506 M	
pH	1 pH Units	TM133	7.71 N	8.52 M	8.42 M	8.23 M	8.52 M	
Chromium, Hexavalent	<0.6 mg/kg	TM151	<0.6	<0.6	<0.6	<0.6 M	<0.6 M	
PCB congener 28	<3 µg/kg	TM168	<3 N	<3	<3 M	<3 M	<3 M	
PCB congener 52	<3 µg/kg	TM168	<3 N	<3	<3 M	<3 M	<3 M	
PCB congener 101	<3 µg/kg	TM168	<3 N	<3	<3 M	<3 M	<3 M	
PCB congener 118	<3 µg/kg	TM168	<3	<3	<3	<3	<3	
PCB congener 138	<3 µg/kg	TM168	<3 N	<3	<3 M	<3	<3 M	
PCB congener 153	<3 µg/kg	TM168	<3	<3	<3	<3	<3	
PCB congener 180	<3 µg/kg	TM168	<3	<3	<3	<3	<3	
Sum of detected PCB 7 Congeners	<21 µg/kg	TM168	<21 N	M <21	<21 M	<21 M	<21 M	
Chromium, Trivalent	<0.9 mg/kg	g TM181	17.7	7.95	10.4	22.7	7.1	
Antimony	<0.6 mg/kg	TM181	<0.6	0.944	0.749	<0.6	1.04	
Areania			7.40		# 4.40	12.7	#	
Arsenic	<0.6 mg/kg		7.16 N		4.46 M	М	3.03 M	
Barium	<0.6 mg/kg		25.7 #	17.2	22.8 #	53.8 #	15.4 #	
Cadmium	<0.02 mg/k	g TM181	1.27 N	0.691 M	0.795 M	1.22 M	0.785 M	
Chromium	<0.9 mg/kç	TM181	17.7 M	8.28 M	10.4 M	22.7 M	7.44 M	
Copper	<1.4 mg/kg	TM181	12.8 M	7 M	9.02 M	24.5 M	5.24 M	
Lead	<0.7 mg/kg	TM181	12.8 N	6.18	8.86 M	28.6 M	5.9 M	
Mercury	<0.1 mg/kg	TM181	<0.1 N	<0.1	<0.1 M	<0.1 M	<0.1 M	
Molybdenum	<0.1 mg/kg	TM181	1.22	0.604	0.601	1.86	0.503 #	
Nickel	<0.2 mg/kg	TM181	41.5 N	14.3	16.9 M	51.4 M	10.9 M	
Selenium	<1 mg/kg	TM181	1.6	<1	<1	<1 #	<1 #	
Zinc	<1.9 mg/kg	TM181	49.6	18.9	29.2	72.8	18.2	
PAH Total 17 (inc Coronene) Moisture Corrected	<10 mg/kg	TM410	<10 N	<10 M	<10 M	<10 M	<10 M	
Coronene	<200 µg/kį	g TM410	<200	<200	<200	<200	<200	
Mineral Oil >C10-C40 (EH_2D_AL)	<5 mg/kg	TM415	<5	<5	<5	<5	<5	

	(ALS)	SDG:	241107-1	02	Re	port Number:	746801	Supersede	a Report:
		Client Ref.:	6380			Location:	CULLAIRBAUN, A	THENRY C.GALW	/AY
P	AH by GCM	S							

PAH by GCMS Results Legend	Cus	tomer Sample Ref.	TP 01		TP 02		TP 03		TP 04		TP 05		
# ISO17025 accredited. M mCERTS accredited.	Cus	tomer Sample Kei.	101		TP 02		IP 03		TP 04		17 05		
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample.		Depth (m)	0.50 - 0.50		0.50 - 0.50		0.50 - 0.50		0.50 - 0.50		0.50 - 0.50		
tot.unfiltTotal / unfiltered sample. * Subcontracted - refer to subcontractor repo	ort for	Sample Type	Soil/Solid (S)										
accreditation status. ** % recovery of the surrogate standard to ch	eck the	Date Sampled Sample Time	05/11/2024		05/11/2024		05/11/2024		05/11/2024		05/11/2024		
efficiency of the method. The results of ind compounds within samples aren't corrected	ividual d for the	Date Received SDG Ref	07/11/2024 241107-102										
recovery (F) Trigger breach confirmed	ı	ab Sample No.(s)	30629606		30629608		30629609		30629610		30629611		
1-4+§@ Sample deviation (see appendix) Component	LOD/Units	AGS Reference Method											
Naphthalene	<9 µg/kg	TM218	<9	M	<9	М	<9	М	<9	М	<9	М	
Acenaphthylene	<12 µg/kg	TM218	<12	M	<12	М	<12		<12		<12	М	
Acenaphthene	<8 µg/kg	TM218	<8		<8		<8	M	<8	M	<8		
Fluorene	<10 µg/kg	TM218	<10	M									
Phenanthrene	<15 µg/kg	TM218	<15	M									
Anthracene	<16 µg/kg	TM218	<16	M									
Fluoranthene	<17 µg/kg	TM218	<17	M	<17	М	<17	М	<17	M	<17	М	
Pyrene	<15 µg/kg	TM218	<15	M	<15	М	<15	M	<15	M	<15	М	
D/->			-4.4	M	-4.4	M	-4.4	М	-4.4	М	-4.4	М	
Benz(a)anthracene	<14 µg/kg		<14	M	<14	М	<14	М	<14	М	<14	М	
Chrysene	<10 µg/kg		<10	М									
Benzo(b)fluoranthene	<15 µg/kg		<15	M	<15	М	<15	М	<15	М	<15	М	
Benzo(k)fluoranthene	<14 µg/kg		<14	M	<14	М	<14	М	<14	М	<14	М	
Benzo(a)pyrene	<15 µg/kg	TM218	<15	M	<15	М	<15	М	<15	М	<15	М	
Indeno(1,2,3-cd)pyrene	<18 µg/kg	TM218	<18	М									
Dibenzo(a,h)anthracene	<23 µg/kg	TM218	<23	М									
Benzo(g,h,i)perylene	<24 µg/kg	TM218	<24	М									
PAH, Total Detected USEPA 16	<118 µg/kç	TM218	<118		<118		<118		<118		<118		
												\dashv	
												-	
												\dashv	

SDG: 241107-102 **Client Ref.:** 6380 Report Number: 746801 Superseded Report: Location: CULLAIRBAUN, ATHENRY C.GALWAY

TPH CWG (S)								
Results Legend # ISO17025 accredited.	Cust	omer Sample Ref.	TP 01	TP 02	TP 03	TP 04	TP 05	
M mCERTS accredited. aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. tot.unfiltrotal / unfiltered sample. Subcontracted - refer to subcontractor report accreditation status.		Depth (m) Sample Type Date Sampled Sample Time	0.50 - 0.50 Soil/Solid (S) 05/11/2024	0.50 - 0.50 Soil/Solid (S) 05/11/2024	0.50 - 0.50 Soil/Solid (S) 05/11/2024	0.50 - 0.50 Soii/Solid (S) 05/11/2024	0.50 - 0.50 Soil/Solid (S) 05/11/2024	
efficiency of the method. The results of indi compounds within samples aren't corrected recovery (F) Trigger breach confirmed 1-4+§@ Sample deviation (see appendix)	ividual d for the L	Date Received SDG Ref ab Sample No.(s) AGS Reference	07/11/2024 241107-102 30629606	07/11/2024 241107-102 30629608	07/11/2024 241107-102 30629609	07/11/2024 241107-102 30629610	07/11/2024 241107-102 30629611	
Component GRO Surrogate % recovery**	LOD/Únits %	Method TM089	128	99.1	96.8	130	106	
Aliphatics >C5-C6 HS_1D_AL)	<10 µg/kg	TM089	<10	<10	<10	<10	<10	
Niphatics >C6-C8 HS_1D_AL)	<10 µg/kg	TM089	<10	<10	<10	<10	<10	
Aliphatics >C8-C10 HS_1D_AL)	<10 µg/kg	TM089	<10	<10	<10	<10	<10	
liphatics >C10-C12 EH_2D_AL_#1)	<1000 µg/kg	TM414	<1000 #	<1000 #	<1000 #	<1000 #	<1000 #	
liphatics >C12-C16 EH_2D_AL_#1)	<1000 µg/kç	TM414	<1000 #	<1000 #	<1000 #	<1000 #	<1000 #	
liphatics >C16-C21 EH_2D_AL_#1)	<1000 µg/kç	TM414	<1000 #	<1000 #	<1000 #	<1000 #	<1000 #	
liphatics >C21-C35 EH_2D_AL_#1)	<1000 µg/kg	TM414	<1000 #	<1000 #	2260 #	<1000 #	<1000 #	
Niphatics >C35-C44 EH_2D_AL_#1)	<1000 µg/kg		<1000	<1000	<1000	<1000	<1000	
otal Aliphatics >C10-C44 EH_2D_AR_#1)	<5000 μg/kg	TM414	<5000	<5000	<5000	<5000	<5000	
otal Aliphatics & Aromatics >C10-C44 EH_2D_Total_#1)	<10000 µg/kg	TM414	<10000	<10000	<10000	<10000	<10000	
romatics >EC5-EC7 HS_1D_AR)	<10 µg/kg	TM089	<10	<10	<10	<10	<10	
romatics >EC7-EC8 HS_1D_AR)	<10 µg/kg	TM089	<10	<10	<10	<10	<10	
uromatics >EC8-EC10 HS_1D_AR)	<10 µg/kg	TM089	<10	<10	<10	<10	<10	
romatics > EC10-EC12 EH_2D_AR_#1)	<1000 µg/kg		<1000 #	<1000 #	<1000 #	<1000 #	<1000 #	
Aromatics > EC12-EC16 EH_2D_AR_#1)	<1000 µg/kç		<1000 #	<1000 #	<1000 #	<1000 #	<1000 #	
vromatics > EC16-EC21 EH_2D_AR_#1)	<1000 µg/kg		<1000 #	<1000 #	<1000 #	<1000 #	<1000 #	
romatics > EC21-EC35 EH_2D_AR_#1)	<1000 µg/kg		<1000 #	1000 #	4800 #	1250 #	1350 #	
Aromatics >EC35-EC44 EH_2D_AR_#1)	<1000 µg/kç		<1000	<1000	<1000	<1000	<1000	
romatics > EC40-EC44 EH_2D_AR_#1)	<1000 µg/kg		<1000	<1000	<1000	<1000	<1000	
otal Aromatics > EC10-EC44 EH_2D_AR_#1)	<5000 μg/kg		<5000	<5000	6540	<5000	<5000	
otal Aliphatics & Aromatics > C5-C44 EH_2D_Total_#1+HS_1D_Total)	<10000 µg/kg	TM414	<10000	<10000	<10000	<10000	<10000	
GRO > C5-C6 HS_1D) GRO > C6-C7	<20 µg/kg	TM089	<20	<20	<20	<20	<20	
GRO > C6-C7 HS_1D) GRO > C7-C8	<20 µg/kg	TM089	<20	<20	<20	<20	<20	
HS_1D) GRO >C8-C10	<20 µg/kg	TM089	<20	<20	<20	<20	<20	
GRO > C8-C10 HS_1D) GRO > C10-C12	<20 µg/kg	TM089	<20	<20	<20	<20	<20	
GRO > C10-C12 HS_1D) Total Aliphatics > C5-C10	<20 µg/kg	TM089	<20 <50	<20	<20	<20	<20 <50	
HS_1D_AL_TOTAL)	<50 µg/kg	TM089		<50	<50	<50		
otal Aromatics >EC5-EC10 HS_1D_AR_TOTAL)	<50 μg/kg	TM089	<50	<50	<50	<50	<50	
GRO >C5-C10 HS_1D_TOTAL)	<20 µg/kg	TM089	<20	<20	<20	<20	<20	

	SDG : 24110	7-102	R	Report Number:	746801	Supersede		
	Ref.: 6380			Location:	CULLAIRBAUN, A	THENRY C.GALW	/AY	
VOC MS (S) Results Legend	Cus	stomer Sample Ref.	TP 01	TP 02	TP 03	TP 04	TP 05	
# ISO17025 accredited. aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. to LunfiltTod 14 unfiltered sample. Subcontracted - refer to subcontractor accreditation status. " % recovery of the surrogate standard in efficiency of the method. The results of compounds within samples aren't corn recovery (F) Trigger breach confirmed 1-4+§@ Sample deviation (see appendix)	report for to check the f individual ected for the	Depth (m) Sample Type Date Sampled Sample Time Date Received SDG Ref Lab Sample No.(s) AGS Reference	0.50 - 0.50 Soil/Solid (S) 05/11/2024 07/11/2024 241107-102 30629606	0.50 - 0.50 Soil/Solid (S) 05/11/2024 07/11/2024 241107-102 30629608	0.50 - 0.50 Soil/Solid (S) 05/11/2024 07/11/2024 241107-102 30629609	0.50 - 0.50 Soil/Solid (S) 05/11/2024 07/11/2024 241107-102 30629610	0.50 - 0.50 Soil/Solid (S) 05/11/2024 07/11/2024 241107-102 30629611	
Component Dibromofluoromethane**	LOD/Únits	Method TM116	127	111	112	119	122	
Dibiomondometriane	70	TIVITIO	127	111	112	119	122	
Coluene-d8**	%	TM116	101	102	97.9	102	101	
-Bromofluorobenzene**	%	TM116	101	89.8	81.7	85.1	98.7	
lethyl Tertiary Butyl Ether	<0.5 µg/kį	g TM116	3.27	<0.5 M	<0.5	<0.5 M	<0.5 M	
enzene	<1 µg/kg	TM116	<1	<1 M	<1	<1 M	<1 M	
l'oluene	<1 µg/kg	TM116	<1	<2 M	<2	<2 M	<1 M	
Ethylbenzene	<1 µg/kg	TM116	<1	<1 M	<1	<1 M	<1 M	
/m-Xylene	<2 µg/kg	TM116	<4	<2 #	<2	<2 #	<2 #	
-Xylene	<2 µg/kg	TM116	<2	<2 M	<2	<2 M	<2 M	

Hazardous

Waste Landfill

CERTIFICATE OF ANALYSIS

SDG: 241107-102 Client Ref.: 6380

Report Number: 746801 Superseded Report: Location: CULLAIRBAUN, ATHENRY C.GALWAY

CEN 10:1 SINGLE STAGE LEACHATE TEST

WAC ANALYTICAL RESULTS **REF: BS EN 12457/2** CULLAIRBAUN, ATHENRY C.G. **Client Reference Site Location** Mass Sample taken (kg) 0.106 **Natural Moisture Content (%)** 17.6 Mass of dry sample (kg) 0.090 **Dry Matter Content (%)** 85 Particle Size <4mm >95% Case **Landfill Waste Acceptance Criteria Limits SDG** 241107-102

Lab Sample Number(s) 30629606 **Sampled Date** 05-Nov-2024 **Customer Sample Ref.** TP 01 Depth (m) 0.50 - 0.50

Stable Non-reactive

Hazardous Waste

in Non-

Hazardous

Inert Waste

Landfill

al Organic Carbon (%) 0.471 s on Ignition (%) 3.12 n of BTEX (mg/kg) on of 7 PCBs (mg/kg) < 0.021 eral Oil (mg/kg) (EH_2D_AL) < 5 H Sum of 17 (mg/kg) < 10 (pH Units) 7.71 C to pH 6 (mol/kg) -		
s on Ignition (%) s on Ignition (%) s on Ignition (%) of BTEX (mg/kg) - on of 7 PCBs (mg/kg) <0.021 feral Oil (mg/kg) (EH_2D_AL) <5 H Sum of 17 (mg/kg) <10 (pH Units) 7.71 - C to pH 6 (mol/kg) - 3.12 5 50	Solid Waste Analysis	Result
- n of BTEX (mg/kg)	Total Organic Carbon (%)	0.471
n of 7 PCBs (mg/kg) <0.021	Loss on Ignition (%)	3.12
eral Oil (mg/kg) (EH_2D_AL) 5 H Sum of 17 (mg/kg) <10	Sum of BTEX (mg/kg)	-
1 Sum of 17 (mg/kg) <10 10 (pH Units) 7.71 - C to pH 6 (mol/kg)	Sum of 7 PCBs (mg/kg)	<0.021
1 Sum of 17 (mg/kg) <10 10 (pH Units) 7.71 - C to pH 6 (mol/kg)	Mineral Oil (mg/kg) (EH_2D_AL)	<5
C to pH 6 (mol/kg) -	PAH Sum of 17 (mg/kg)	<10
	pH (pH Units)	7.71
C to pH 4 (mol/kg) -	ANC to pH 6 (mol/kg)	-
	ANC to pH 4 (mol/kg)	-

Eluate Analysis	C ₂ Conc ⁿ in 1	0:1 eluate (mg/l)	A2 10:1 conc	leached (mg/kg)		for compliance l EN 12457-3 at L	
	Result	Limit of Detection	Result	Limit of Detection	_		
Arsenic	<0.0005	<0.0005	<0.005	<0.005	0.5	2	25
Barium	0.00141	<0.0002	0.0141	<0.002	20	100	300
Cadmium	<0.00008	<0.00008	<0.0008	<0.0008	0.04	1	5
Chromium	0.0016	<0.001	0.016	<0.01	0.5	10	70
Copper	0.00201	<0.0003	0.0201	<0.003	2	50	100
Mercury Dissolved (CVAF)	<0.00001	<0.00001	<0.0001	<0.0001	0.01	0.2	2
Molybdenum	<0.003	<0.003	<0.03	<0.03	0.5	10	30
Nickel	0.00158	<0.0004	0.0158	<0.004	0.4	10	40
Lead	0.000366	<0.0002	0.00366	<0.002	0.5	10	50
Antimony	<0.001	<0.001	<0.01	<0.01	0.06	0.7	5
Selenium	<0.001	<0.001	<0.01	<0.01	0.1	0.5	7
Zinc	0.00501	<0.001	0.0501	<0.01	4	50	200
Chloride	<2	<2	<20	<20	800	15000	25000
Fluoride	<0.5	<0.5	<5	<5	10	150	500
Sulphate (soluble)	<2	<2	<20	<20	1000	20000	50000
Total Dissolved Solids	39.7	<10	397	<100	4000	60000	100000
Total Monohydric Phenols (W)	<0.016	<0.016	<0.16	<0.16	1	-	-
Dissolved Organic Carbon	3.53	<3	35.3	<30	500	800	1000
Dissolved Organic Carbon	3.53	73	33.3	<30	500	600	1000

Leach Test Information

Date Prepared	08-Nov-2024
pH (pH Units)	8.10
Conductivity (µS/cm)	51
Volume Leachant (Litres)	0.884

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Leachates prepared in accordance with BS EN 12457 will be carried out at room temperature (20±5°C)

Stated limits are for guidance only and ALS Laboratories (UK) Limited cannot be held responsible for any discrepancies with current legislation

SDG: 241107-102 Client Ref.: 6380

Report Number: 746801 Superseded Report: Location: CULLAIRBAUN, ATHENRY C.GALWAY

WAC ANALYTICAL RES	SULTS					REF : BS E	N 12457/2
Client Reference			Site Location		CULI	_AIRBAUN, AT	THENRY C
Mass Sample taken (kg)	0.107			ure Content (%		27 (11 (25) (31 (,) (
. , .,	0.090			•	83.7		
Mass of dry sample (kg)			Dry Matter Co	mtent (%)	03.1		
Particle Size <4mm	>95%						
Case						II Waste Acce	•
SDG	241107-102					Criteria Limit	s
Lab Sample Number(s)	30629608						
Sampled Date	05-Nov-2024					Stable	
Customer Sample Ref.	TP 02				Inert Waste	Non-reactive Hazardous Waste	Hazardous
Depth (m)	0.50 - 0.50				Landfill	in Non- Hazardous	Waste Landfill
Solid Waste Analysis	Result					Landfill	
Total Organic Carbon (%)	0.479				3	5	6
Loss on Ignition (%)	2.09				-	-	10
Sum of BTEX (mg/kg)	-				-		-
Sum of 7 PCBs (mg/kg) Mineral Oil (mg/kg) (EH_2D_AL)	<0.021 <5				500	-	-
PAH Sum of 17 (mg/kg)	<10				100	-	-
pH (pH Units)	8.52				-	>6	-
ANC to pH 6 (mol/kg)	-				-	-	-
ANC to pH 4 (mol/kg)	-				-	-	-
Eluate Analysis	C ₂ Conc ⁿ in 1	0:1 eluate (mg/l) A2 10:1 conc ⁿ leached (mg/kg)			using BS EN 12457-3 at L/S 10 l/kg		
	Result	Limit of Detection		Limit of Detection	0.5		0.5
Arsenic	<0.0005	<0.0005	<0.005	<0.005	0.5	2	25
Barium	0.00207	<0.0002	0.0207	<0.002	20	100	300
Cadmium	<0.00008	<0.00008	<0.0008	<0.0008	0.04	1	5
Chromium	<0.001 0.00154	<0.001	<0.01	<0.01	0.5	10	70
Copper Mercury Dissolved (CVAF)		<0.0003	0.0154	<0.003	0.01	0.2	100
Molybdenum	0.0000109 <0.003	<0.00001 <0.003	0.000109 <0.03	<0.0001 <0.03	0.01	10	30
Nickel	0.000451	<0.003	0.00451	<0.004	0.4	10	40
Lead	<0.0002	<0.0004	<0.002	<0.002	0.4	10	50
Antimony	<0.001	<0.001	<0.002	<0.002	0.06	0.7	5
Selenium	<0.001	<0.001	<0.01	<0.01	0.00	0.5	7
Zinc	0.00288	<0.001	0.0288	<0.01	4	50	200
Chloride	2.3	<2	23	<20	800	15000	25000
Fluoride	0.51	<0.5	5.1	<5	10	150	500
Sulphate (soluble)	<2	<2	<20	<20	1000	20000	50000
Total Dissolved Solids	90.5	<10	905	<100	4000	60000	100000
Total Monohydric Phenols (W)	<0.016	<0.016	<0.16	<0.16	1	-	-
Dissolved Organic Carbon	3.88	<3	38.8	<30	500	800	1000
•							

Leach Test Information

Date Prepared	09-Nov-2024
pH (pH Units)	8.65
Conductivity (µS/cm)	120
Volume Leachant (Litres)	0.883

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Leachates prepared in accordance with BS EN 12457 will be carried out at room temperature (20±5°C)

Stated limits are for guidance only and ALS Laboratories (UK) Limited cannot be held responsible for any discrepancies with current legislation

SDG: 241107-102 **Client Ref**.: 6380

Report Number: 746801 Superseded Report: Location: CULLAIRBAUN, ATHENRY C.GALWAY

CEN 10:1 SINGLE STAGE LEACHATE TEST

WAC ANALYTICAL RES	SULTS				I	REF : BS E	N 12457/2
Client Reference			Site Location		CULL	AIRBAUN, A	ΓHENRY C.
Mass Sample taken (kg)	0.105			ure Content (%			
Mass of dry sample (kg)	0.090		Dry Matter Co		86.5		
Particle Size <4mm	>95%		Dry Watter Co	ontent (70)	00.0		
Particle Size <4mm	795 %						
Case						II Waste Acce	•
SDG	241107-102				(Criteria Limit	S
Lab Sample Number(s)	30629609						
Sampled Date	05-Nov-2024					Stable Non-reactive	
Customer Sample Ref.	TP 03				Inert Waste	Hazardous Waste	Hazardous
Depth (m)	0.50 - 0.50				Landfill	in Non- Hazardous	Waste Landfill
Solid Waste Analysis	Result					Landfill	
Total Organic Carbon (%)	1.06				3	5	6
Loss on Ignition (%)	3.9				-	-	10
Sum of BTEX (mg/kg)	-				-	-	-
Sum of 7 PCBs (mg/kg) Mineral Oil (mg/kg) (EH 2D AL)	<0.021 <5				500	-	-
PAH Sum of 17 (mg/kg)	<10				100	-	-
pH (pH Units)	8.42				-	>6	-
ANC to pH 6 (mol/kg)	-				-	-	-
ANC to pH 4 (mol/kg)	-				-	-	-
Eluate Analysis	C ₂ Conc ⁿ in 10	0:1 eluate (mg/l)	A 2 10:1 conc	ⁿ leached (mg/kg)		for compliance l EN 12457-3 at L	
	Result	Limit of Detection		Limit of Detection	0.5		0.5
Arsenic	<0.0005	<0.0005	<0.005	<0.005	0.5	2	25
Barium	0.00369	<0.0002	0.0369	<0.002	20	100	300
Cadmium	<0.00008	<0.00008	<0.0008	<0.0008	0.04	1	5
Chromium	0.00122	<0.001	0.0122	<0.01	0.5	10	70
Copper	0.002	<0.0003	0.02	<0.003	2	50	100
Mercury Dissolved (CVAF)	<0.00001	<0.00001	<0.0001	<0.0001	0.01	0.2	2
Molybdenum	<0.003	<0.003	<0.03	<0.03	0.5	10	30
Nickel	0.000946	<0.0004	0.00946 0.00249	<0.004	0.4	10	40
Lead	0.000249 <0.001	<0.0002 <0.001	<0.01	<0.002 <0.01	0.5	0.7	50 5
Antimony Selenium	<0.001	<0.001	<0.01	<0.01	0.06	0.7	7
Zinc	0.00182	<0.001	0.0182	<0.01	4	50	200
Chloride	5.6	<2	56	<20	800	15000	25000
Fluoride	<0.5	<0.5	<5	<5	10	1500	500
Sulphate (soluble)	<2	<2	<20	<20	1000	20000	50000
Total Dissolved Solids	98.8	<10	988	<100	4000	60000	100000
Total Monohydric Phenols (W)	<0.016	<0.016	<0.16	<0.16	1	-	- 100000
							1000
Dissolved Organic Carbon	3.8	<3	38	<30	500	800	1000

Leach Test Information

Date Prepared	09-Nov-2024
pH (pH Units)	8.53
Conductivity (µS/cm)	129
Volume Leachant (Litres)	0.885

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Leachates prepared in accordance with BS EN 12457 will be carried out at room temperature (20±5°C)

Stated limits are for guidance only and ALS Laboratories (UK) Limited cannot be held responsible for any discrepancies with current legislation

1000

800

CERTIFICATE OF ANALYSIS

SDG: 241107-102 **Client Ref.:** 6380

Report Number: 746801 Superseded Report: Location: CULLAIRBAUN, ATHENRY C.GALWAY

CEN 10:1 SINGLE STAGE LEACHATE TEST

WAC ANALYTICAL RE	SULTS					REF : BS E	N 12457/2
Client Reference			Site Location		CULI	_AIRBAUN, AT	THENRY C.G
Mass Sample taken (kg)	0.106			ure Content (%			
Mass of dry sample (kg)	0.090		Dry Matter Co	•	85.2		
Particle Size <4mm	>95%		Dry Matter Co	intent (70)	05.2		
Particle Size \4mm	2 9 5%						
Case						II Waste Acce	
SDG	241107-102					Criteria Limit	S
Lab Sample Number(s)	30629610						
Sampled Date	05-Nov-2024					Stable	
Customer Sample Ref.	TP 04				Inert Waste	Non-reactive Hazardous Waste	Hazardous
Depth (m)	0.50 - 0.50				Landfill	in Non-	Waste Landfill
Deptii (iii)	0.50 - 0.50					Hazardous Landfill	
Solid Waste Analysis	Result						
Total Organic Carbon (%)	0.724				3	5	6
Loss on Ignition (%)	5.57				-	-	10
Sum of BTEX (mg/kg)	-				-	-	-
Sum of 7 PCBs (mg/kg)	<0.021 <5				1 500	-	-
Mineral Oil (mg/kg) (EH_2D_AL) PAH Sum of 17 (mg/kg)	<10				100	-	-
pH (pH Units)	8.23				-	>6	-
ANC to pH 6 (mol/kg)	-				-	-	-
ANC to pH 4 (mol/kg)	-				-	-	-
Eluate Analysis	C ₂ Conc ⁿ in 1	0:1 eluate (mg/l)	A 2 10:1 conc ⁿ	leached (mg/kg)		for compliance le	
	Result	Limit of Detection	110000	Limit of Detection	_		
Arsenic	<0.0005	<0.0005	<0.005	<0.005	0.5	2	25
Barium	0.0018	<0.0002	0.018	<0.002	20	100	300
Cadmium	<0.00008	<0.00008	<0.0008	<0.0008	0.04	1	5
Chromium	<0.001	<0.001	<0.01	<0.01	0.5	10	70
Copper	0.00172	<0.0003	0.0172	<0.003	2	50	100
Mercury Dissolved (CVAF)	<0.00001	<0.00001	<0.0001	<0.0001	0.01	0.2	2
Molybdenum	<0.003	<0.003	<0.03	<0.03	0.5	10	30
Nickel	0.000558	<0.0004	0.00558	<0.004	0.4	10	40
Lead	0.000221	<0.0002	0.00221	<0.002	0.5	10	50
Antimony	<0.001	<0.001	<0.01	<0.01	0.06	0.7	5
Selenium	<0.001	<0.001	<0.01	<0.01	0.1	0.5	7
Zinc	0.00521	<0.001	0.0521	<0.01	4	50	200
Chloride	<2	<2	<20	<20	800	15000	25000
Fluoride	0.525	<0.5	5.25	<5	10	150	500
Sulphate (soluble)	<2	<2	<20	<20	1000	20000	50000
Total Dissolved Solids	94.2	<10	942	<100	4000	60000	100000
Total Monohydric Phenols (W)	<0.016	<0.016	<0.16	<0.16	1	-	-
	0.05				E00	000	1000

Leach Test Information

Dissolved Organic Carbon

Date Prepared	08-Nov-2024
pH (pH Units)	8.56
Conductivity (µS/cm)	123
Volume Leachant (Litres)	0.884

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Leachates prepared in accordance with BS EN 12457 will be carried out at room temperature (20±5°C)

3.35

Stated limits are for guidance only and ALS Laboratories (UK) Limited cannot be held responsible for any discrepancies with current legislation

<3

15/11/2024 12:33:33

33.5

<30

500

SDG: 241107-102 **Client Ref**.: 6380

Report Number: 746801 Superseded Report: Location: CULLAIRBAUN, ATHENRY C.GALWAY

CEN 10:1 SINGLE STAGE LEACHATE TEST

WAC ANALYTICAL RE	SULTS				I	REF : BS E	N 12457/
Client Reference			Site Location		CULL	AIRBAUN, A	THENRY C
Mass Sample taken (kg)	0.097		Natural Moist	ure Content (%		- ,	
Mass of dry sample (kg)	0.090		Dry Matter Co	•	92.9		
Particle Size <4mm	>95%		Dry Matter Co	ontent (70)	32.3		
Particle Size \4iiiii	>93 /6						
Case						II Waste Acce	
SDG	241107-102				(Criteria Limit	S
Lab Sample Number(s)	30629611						
Sampled Date	05-Nov-2024					Stable	
Customer Sample Ref.	TP 05				Inert Waste	Non-reactive Hazardous Waste	Hazardous
Depth (m)	0.50 - 0.50				Landfill	in Non-	Waste Landfi
Deptii (iii)	0.00 - 0.00					Hazardous Landfill	
Solid Waste Analysis	Result						
Total Organic Carbon (%)	0.506				3	5	6
Loss on Ignition (%)	2.15				-	-	10
Sum of BTEX (mg/kg)	-				-	-	-
Sum of 7 PCBs (mg/kg)	<0.021 <5				500	-	-
Mineral Oil (mg/kg) (EH_2D_AL) PAH Sum of 17 (mg/kg)	<10				100	-	-
pH (pH Units)	8.52				-	>6	-
ANC to pH 6 (mol/kg)	-				-	-	-
ANC to pH 4 (mol/kg)	-				-	-	-
Eluate Analysis	C ₂ Conc ⁿ in 10	0:1 eluate (mg/l) A ₂ 10:1 conc ⁿ leached (mg/kg)			Limit values for compliance leaching test using BS EN 12457-3 at L/S 10 l/kg		
	Result	Limit of Detection		Limit of Detection	0.5		
Arsenic	<0.0005	<0.0005	<0.005	<0.005	0.5	2	25
Barium	0.00754	<0.0002	0.0754	<0.002	20	100	300
Cadmium	0.000115	<0.00008	0.00115	<0.0008	0.04	1	5
Chromium	0.0034	<0.001	0.034	<0.01	0.5	10	70
Copper	0.00258	<0.0003	0.0258	<0.003	2	50	100
Mercury Dissolved (CVAF)	<0.00001	<0.00001	<0.0001	<0.0001	0.01	0.2	2
Molybdenum	<0.003	<0.003	<0.03	<0.03	0.5	10	30
Nickel	0.00369	<0.0004	0.0369	<0.004	0.4	10	40
Lead	0.000929	<0.0002	0.00929	<0.002	0.5	10	50
Antimony	<0.001	<0.001	<0.01	<0.01	0.06	0.7	5
0 - 1 1	<0.001	<0.001	<0.01	<0.01	0.1	0.5	7
		< 0.001	0.0782	<0.01 <20	4	50	200
Zinc	0.00782			///	800		25000
Zinc Chloride	<2	<2	<20			15000	F00
Zinc Chloride Fluoride	<2 <0.5	<2 <0.5	<5	<5	10	150	500
Zinc Chloride Fluoride Sulphate (soluble)	<2 <0.5 <2	<2 <0.5 <2	<5 <20	<5 <20	10 1000	150 20000	50000
Zinc Chloride Fluoride Sulphate (soluble) Total Dissolved Solids	<2 <0.5 <2 62	<2 <0.5 <2 <10	<5 <20 620	<5 <20 <100	10 1000 4000	150 20000 60000	
Selenium Zinc Chloride Fluoride Sulphate (soluble) Total Dissolved Solids Total Monohydric Phenols (W) Dissolved Organic Carbon	<2 <0.5 <2	<2 <0.5 <2	<5 <20	<5 <20	10 1000	150 20000	50000

Leach Test Information

Date Prepared	09-Nov-2024
pH (pH Units)	8.93
Conductivity (µS/cm)	81
Volume Leachant (Litres)	0.893

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Leachates prepared in accordance with BS EN 12457 will be carried out at room temperature (20±5°C)

Stated limits are for guidance only and ALS Laboratories (UK) Limited cannot be held responsible for any discrepancies with current legislation

SDG: 241107-102 Report Number: 746801 Superseded Report: Client Ref.: 6380 Location: CULLAIRBAUN, ATHENRY C.GALWAY

Table of Results - Appendix

Method No	Description Description
PM024	Soil preparation including homogenisation, moisture, screens of soils for Asbestos Containing Material
PM115	Leaching Procedure for CEN One Stage Leach Test 2:1 & 10:1 1 Step
TM018	Determination of Loss on Ignition
TM090	Determination of Total Organic Carbon/Total Inorganic Carbon in Water and Waste Water
TM116	Determination of Volatile Organic Compounds by Headspace / GC-MS
TM132	ELTRA CS800 Operators Guide
TM133	Determination of pH in Soil and Water using the GLpH pH Meter
TM259	Determination of Phenols in Waters and Leachates by HPLC
TM410	Determination of Coronene in soils by GCMS
TM104	Determination of Fluoride using the Kone Analyser
TM183	Determination of Trace Level Mercury in Waters and Leachates by PSA Cold Vapour Atomic Fluorescence Spectrometry
TM184	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers
TM414	Determination of Speciated Extractable Petroleum Hydrocarbons in Soils by GCxGC-FID
TM089	Determination of Gasoline Range Hydrocarbons (GRO) by Headspace GC-FID (C4-C12)
TM151	Determination of Hexavalent Chromium using Kone analyser
TM181	Determination of Routine Metals in Soil by iCap 6500 Duo ICP-OES
TM152	Analysis of Aqueous Samples by ICP-MS
TM168	Determination of WHO12 and EC7 Polychlorinated Biphenyl Congeners by GC-MS in Soils
TM218	The determination of PAH in soil samples by GC-MS
TM256	Determination of pH, EC, TDS and Alkalinity in Aqueous samples
TM415	Determination of Extractable Petroleum Hydrocarbons in Soils by GCxGC-FID

NA = not applicable.

Chemical testing (unless subcontracted) performed at ALS Laboratories (UK) Limited Hawarden (Method codes TM).

Validated

CERTIFICATE OF ANALYSIS

SDG: 241107-102 **Client Ref.:** 6380

Report Number: 746801 Superseded Report: Location: CULLAIRBAUN, ATHENRY C.GALWAY

Test Completion Dates

		1031		pictio	II Duk
Lab Sample No(s)	30629606	30629608	30629609	30629610	30629611
Customer Sample Ref.	TP 01	TP 02	TP 03	TP 04	TP 05
AGS Ref.					
Depth	0.50 - 0.50	0.50 - 0.50	0.50 - 0.50	0.50 - 0.50	0.50 - 0.50
Туре	Soil/Solid (S)				
Anions by Kone (w)	12-Nov-2024	12-Nov-2024	12-Nov-2024	12-Nov-2024	12-Nov-2024
CEN 10:1 Leachate (1 Stage)	08-Nov-2024	09-Nov-2024	09-Nov-2024	08-Nov-2024	09-Nov-2024
CEN Readings	12-Nov-2024	12-Nov-2024	12-Nov-2024	12-Nov-2024	12-Nov-2024
Chromium III	13-Nov-2024	11-Nov-2024	13-Nov-2024	11-Nov-2024	14-Nov-2024
Coronene	15-Nov-2024	14-Nov-2024	13-Nov-2024	14-Nov-2024	14-Nov-2024
Dissolved Metals by ICP-MS	12-Nov-2024	12-Nov-2024	12-Nov-2024	12-Nov-2024	12-Nov-2024
Dissolved Organic/Inorganic Carbon	12-Nov-2024	12-Nov-2024	12-Nov-2024	12-Nov-2024	12-Nov-2024
EPH by GCxGC-FID	13-Nov-2024	14-Nov-2024	14-Nov-2024	13-Nov-2024	13-Nov-2024
EPH CWG GC (S)	12-Nov-2024	12-Nov-2024	12-Nov-2024	12-Nov-2024	12-Nov-2024
Fluoride	12-Nov-2024	12-Nov-2024	12-Nov-2024	12-Nov-2024	12-Nov-2024
GRO by GC-FID (S)	12-Nov-2024	12-Nov-2024	12-Nov-2024	12-Nov-2024	12-Nov-2024
Hexavalent Chromium (s)	08-Nov-2024	08-Nov-2024	08-Nov-2024	08-Nov-2024	14-Nov-2024
Loss on Ignition in soils	11-Nov-2024	11-Nov-2024	11-Nov-2024	11-Nov-2024	11-Nov-2024
Mercury Dissolved	13-Nov-2024	13-Nov-2024	13-Nov-2024	13-Nov-2024	13-Nov-2024
Metals in solid samples by OES	14-Nov-2024	14-Nov-2024	14-Nov-2024	14-Nov-2024	14-Nov-2024
Moisture at 105C	08-Nov-2024	09-Nov-2024	09-Nov-2024	08-Nov-2024	09-Nov-2024
PAH 16 & 17 Calc	12-Nov-2024	12-Nov-2024	13-Nov-2024	12-Nov-2024	12-Nov-2024
PAH by GCMS	12-Nov-2024	12-Nov-2024	13-Nov-2024	12-Nov-2024	12-Nov-2024
PCBs by GCMS	12-Nov-2024	12-Nov-2024	14-Nov-2024	12-Nov-2024	12-Nov-2024
pH	12-Nov-2024	12-Nov-2024	12-Nov-2024	12-Nov-2024	12-Nov-2024
pH Value of Filtered Water	14-Nov-2024	14-Nov-2024	12-Nov-2024	14-Nov-2024	12-Nov-2024
Phenols by HPLC (W)	13-Nov-2024	13-Nov-2024	12-Nov-2024	13-Nov-2024	12-Nov-2024
Sample description	07-Nov-2024	07-Nov-2024	07-Nov-2024	07-Nov-2024	07-Nov-2024
Total Organic Carbon	11-Nov-2024	11-Nov-2024	11-Nov-2024	11-Nov-2024	11-Nov-2024
TPH CWG GC (S)	12-Nov-2024	12-Nov-2024	12-Nov-2024	12-Nov-2024	12-Nov-2024
VOC MS (S)	14-Nov-2024	12-Nov-2024	12-Nov-2024	12-Nov-2024	12-Nov-2024

SDG: 241107-102 Report Number: 746801 Superseded Report: Client Ref: 6380 Location: CULLAIRBAUN, ATHENRY C.GALWAY

Appendix General

1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.

- 2. If sufficient sample is received a sub sample will be retained free of charge for 15 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of 15 days after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALS reserve the right to charge for samples received and stored but not analysed.
- 3. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- 4. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.
- 5. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.
- 6. NDP No determination possible due to insufficient/unsuitable sample.
- 7. Results relate only to the items tested.
- 8. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content.
- 9. Surrogate recoveries Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect.
- 10. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.
- 11. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.
- 12. For dried and crushed preparations of soils volatile loss may occur e.g volatile mercury
- 13. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.
- 14. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.
- 15. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.
- 16. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.
- 17 Data retention. All records, communications and reports pertaining to the analysis are archived for seven years from the date of issue of the final report.

18. **Tentatively Identified Compounds (TICs)** are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

19. Sample Deviations

If a sample is classed as deviated then the associated results may be compromised.

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
4	Matrix interference
•	Sample holding time exceeded in laboratory
@	Sample holding time exceeded due to late arrival of instructions or samples
§	Sampled on date not provided

20. Asbestos

When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2021), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials and soils are obtained from supplied bulk materials andd soils which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2021).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining.

Asbe stos Type	Common Name
Chrysof le	White Asbests
Amosite	Brow n Asbestos
Cro d dolite	Blue Asbe stos
Fibrous Act nolite	-
Fib to us Anthop hyll ite	-
Fibrous Tremol ite	-

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

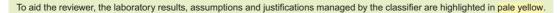
Respirable Fibres

Respirable fibres are defined as fibres of <3 μ m diameter, longer than 5 μ m and with aspect ratios of at least 3:1 that can be inhaled into the lower regions of the lung and are generally acknowledged to be most important predictor of hazard and risk for cancers of the lung.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

Appendix 7 Waste Classification Report



Waste Classification Report

HazWasteOnline™ classifies waste as either **hazardous** or **non-hazardous** based on its chemical composition, related legislation and the rules and data defined in the current UK or EU technical guidance (Appendix C) (note that HP 9 Infectious is not assessed). It is the responsibility of the classifier named below to:

- a) understand the origin of the waste
- b) select the correct List of Waste code(s)
- c) confirm that the list of determinands, results and sampling plan are fit for purpose
- d) select and justify the chosen metal species (Appendix B)
- e) correctly apply moisture correction and other available corrections
- f) add the meta data for their user-defined substances (Appendix A)
- g) check that the classification engine is suitable with respect to the national destination of the waste (Appendix C)

JOMI 9-8020H-XXFI

Report is invalid if pages are removed.

Job name

6380

Description/Comments

Client: Galway County Council Engineer: SDS Design Engineers

Project

Cullairbaun

Site

Athenry, Co. Galway

Course

Classified by

Name: Company:

Stephen Letch Site Investigations Ltd

Date: The Grange
03 Dec 2024 10:43 GMT 12th Lock Road
Telephone: Lucan

00353 86817 9449 K78 F598

HazWasteOnline™ provides a two day, hazardous waste classification course that covers the use of the software and both basic and advanced waste classification techniques. Certification has to be renewed every 3 years.

HazWasteOnline™ Certification:

CERTIFIED Date

Hazardous Waste Classification Most recent 3 year Refresher

09 Oct 2019 04 Oct 2022

Next 3 year Refresher due by Oct 2025

Purpose of classification

2 - Material Characterisation

Address of the waste

Cullairbaun, Athenry, Co. Galway

Post Code N/A

SIC for the process giving rise to the waste

43130 Test drilling and boring

Description of industry/producer giving rise to the waste

Site Investigation

Description of the specific process, sub-process and/or activity that created the waste

Soils recovered for environmental testing

Description of the waste

Natural soils

HazWasteOnline[™] Report created by Stephen Letch on 03 Dec 2024

Job summary

#	Sample name	Depth [m]	Classification Result	Hazard properties	WAC Results		- Page	
#	Sample name	Deptil [III]	Classification Nesult	riazaru properties	Inert	Non Haz	rage	
1	TP01-0.50	0.50	Non Hazardous		Pass	Pass	3	
2	TP02-0.50	0.50	Non Hazardous		Pass	Pass	7	
3	TP03-0.50	0.50	Non Hazardous		Pass	Pass	11	
4	TP04-0.50	0.50	Non Hazardous		Pass	Pass	15	
5	TP05-0.50	0.50	Non Hazardous		Pass	Pass	19	

Related documents

# Name	Description
1 241107-102.hwol	ALS Hawarden .hwol file used to populate the Job
2 Rilta Suite NEW	waste stream template used to create this Job

WAC results

WAC Settings: samples in this Job constitute a single population.

WAC limits used to evaluate the samples in this Job: "Ireland"

The WAC used in this report are the WAC defined for the inert and non-hazardous classes of landfill in the Republic of Ireland. You should check the actual acceptance criteria when the disposal site is identified as they may differ from the generic WAC used in this report.

Created by: Stephen Letch Created date: 03 Dec 2024 10:43 GMT Appendices Page Appendix A: Classifier defined and non EU CLP determinands 23 Appendix B: Rationale for selection of metal species 24 25 Appendix C: Version

Page 2 of 26 JOML9-8020H-XXEFL www.hazwasteonline.com

Classification of sample: TP01-0.50

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: TP01-0.50 Chapter: Sample Depth: Entry:

from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03) $\,$

17: Construction and Demolition Wastes (including excavated soil

Moisture content: 13%

(wet weight correction)

Hazard properties

None identified

Determinands

Moisture content: 13% Wet Weight Moisture Correction applied (MC)

#		Determin EU CLP index		CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	0	TPH (C6 to C40) petroleum gr	oup	TPH		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>
2	0	confirm TPH has NOT arisen f	rom die	esel or petrol		✓							
3	4	antimony { antimony trioxide } 051-005-00-X		1309-64-4		<0.6	mg/kg	1.197	<0.718	mg/kg	<0.0000718 %		<lod< td=""></lod<>
4	4	arsenic { arsenic pentoxide } 033-004-00-6				7.16	mg/kg	1.534	9.555	mg/kg	0.000955 %	✓	
5	≪3	barium { barium sulphide }		21109-95-5		25.7	mg/kg	1.233	27.58	mg/kg	0.00276 %	✓	
6	4	cadmium { cadmium sulfate } 048-009-00-9 233-331-6		10124-36-4		1.27	mg/kg	1.855	2.049	mg/kg	0.000205 %	✓	
7	4	copper { dicopper oxide; coppe 029-002-00-X 215-270-7	er (I) ox	ide 1317-39-1		12.8	mg/kg	1.126	12.538	mg/kg	0.00125 %	✓	
8	4	lead { • lead compounds with specified elsewhere in this Ann 082-001-00-6	the ex	ception of those orst case) }	1	12.8	mg/kg		11.136	mg/kg	0.00111 %	✓	
9	4	mercury { mercury dichloride } 080-010-00-X 231-299-8		7487-94-7		<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
10	4	molybdenum { molybdenum(V 042-001-00-9 215-204-7	l) oxide	} 1313-27-5		1.22	mg/kg	1.5	1.592	mg/kg	0.000159 %	✓	
11	4	nickel { nickel sulfate } 028-009-00-5 232-104-9		7786-81-4		41.5	mg/kg	2.637	95.198	mg/kg	0.00952 %	✓	
12	4	selenium { selenium compouncadmium sulphoselenide and telsewhere in this Annex }				1.6	mg/kg	1.405	1.956	mg/kg	0.000196 %	✓	
13		zinc { zinc sulphate } 030-006-00-9		7446-19-7 [1] 7733-02-0 [2]		49.6	mg/kg	2.469	106.555	mg/kg	0.0107 %	✓	
14	4	chromium in chromium(III) con chromium(III) oxide (worst cas: 215-160-9		s { • 1308-38-9		17.7	mg/kg	1.462	22.506	mg/kg	0.00225 %	✓	

HazWasteOnline[™] Report created by Stephen Letch on 03 Dec 2024

					Note							-	
#		Determinand				User entered data		Conv. Factor	Compound conc.		Classification value	MC Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP							MC	
15	æ	oxide }	•			<0.6 mg/k	g /	1.923	<1.154	mg/kg	<0.000115 %		<lod< td=""></lod<>
		024-001-00-0 215-607-8 1333-82-0 naphthalene			+							Н	
16		·	202-049-5	91-20-3	-	<0.009 mg/k	g		<0.009	mg/kg	<0.0000009 %		<lod< td=""></lod<>
17	0	acenaphthylene	205-917-1	208-96-8		<0.012 mg/k	g		<0.012	mg/kg	<0.0000012 %		<lod< td=""></lod<>
18	0	acenaphthene	201-469-6	83-32-9		<0.008 mg/k	g		<0.008	mg/kg	<0.0000008 %		<lod< td=""></lod<>
19	0	fluorene	l .	1		<0.01 mg/k	g		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
20	0	phenanthrene	201-695-5	86-73-7		<0.015 mg/k	g		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
21	0	anthracene		85-01-8	-	<0.016 mg/k	g		<0.016	mg/kg	<0.0000016 %		<lod< td=""></lod<>
22	0	fluoranthene	204-371-1	120-12-7		<0.017 mg/k	g		<0.017	mg/kg	<0.0000017 %		<lod< td=""></lod<>
23	0	pyrene	205-912-4	206-44-0	\vdash	<0.015 mg/k			<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
24		benzo[a]anthracen	204-927-3 e	129-00-0	-	<0.014 mg/k			<0.014	mg/kg	<0.0000014 %		<lod< td=""></lod<>
25		601-033-00-9 chrysene	200-280-6	56-55-3	\vdash								<lod <lod< td=""></lod<></lod
		601-048-00-0 benzo[b]fluoranthe	205-923-4 ne	218-01-9	-	<0.01 mg/k			<0.01	mg/kg	<0.000001 %		
26			205-911-9	205-99-2		<0.015 mg/k	g		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
27		601-036-00-5 205-916-6 207-08-9			<0.014 mg/k	g		<0.014	mg/kg	<0.0000014 %		<lod< td=""></lod<>	
28			200-028-5	50-32-8		<0.015 mg/k	g		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
29	0	indeno[123-cd]pyrene				<0.018 mg/k	g		<0.018	mg/kg	<0.0000018 %		<lod< td=""></lod<>
30		dibenz[a,h]anthrace 601-041-00-2	ene 200-181-8	53-70-3	-	<0.023 mg/k	g		<0.023	mg/kg	<0.0000023 %		<lod< td=""></lod<>
31	0	benzo[ghi]perylene	205-883-8	191-24-2		<0.024 mg/k	g		<0.024	mg/kg	<0.0000024 %		<lod< td=""></lod<>
32	0	polychlorobiphenyl 602-039-00-4	s; PCB 215-648-1	1336-36-3		<0.021 mg/k	g		<0.021	mg/kg	<0.0000021 %		<lod< td=""></lod<>
33		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane 603-181-00-X 216-653-1 1634-04-4				0.0032 mg/k	g		0.0028	mg/kg	0.000000284	✓	
34		benzene	200-753-7	71-43-2	+	<0.001 mg/k	g		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
35		toluene	203-625-9	108-88-3		<0.001 mg/k	g		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
36	0	ethylbenzene	202-849-4	100-41-4		<0.001 mg/k	g		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
37	0	coronene		191-07-1		<0.2 mg/k	g		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
38	0	рН	205-881-7			7.71 pH			7.71	рН	7.71 pH		
		o-xylene; [1] p-xylene; [2] m-xylene; [3] xylene [4]			+							Н	
39		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3]		<0.006 mg/k	g		<0.006	mg/kg	<0.0000006 %		<lod< td=""></lod<>
	215-535-7 [4] 1330-20-7 [4]									Total:	0.0303 %	Н	
				-						iotai.	J.5000 /0		

Page 4 of 26 JOML9-8020H-XXEFL www.hazwasteonline.com

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

₫ <LOD Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous Property to non-hazardous for cumulative determinand results below the threshold of: 1000 mg/kg (0.1%) because: HP 3 can be discounted as this is a solid waste without a free draining liquid phase.

Hazard Statements hit:

Flam. Liq. 2; H225 "Highly flammable liquid and vapour."

Because of determinand:

tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane (conc.: 2.84e-07%)

WAC results for sample: TP01-0.50

WAC Settings: samples in this Job constitute a single population.

WAC limits used to evaluate this sample: "Ireland"
The WAC used in this report are the WAC defined for the inert and non-hazardous classes of landfill in the Republic of Ireland. You should check the actual acceptance criteria when the disposal site is identified as they may differ from the generic WAC used in this report.

The sample PASSES the Inert (Inert waste landfill) criteria.

The sample PASSES the Non Haz (Non hazardous waste landfill) criteria.

WAC Determinands

	Solid Waste Analysis			Landfill Waste Acce	ptance Criteria Limits
#	Determinand		User entered data	Inert waste landfill	Non hazardous waste landfill
1	TOC (total organic carbon)	%	0.471	3	5
2	LOI (loss on ignition)	%	3.12	-	-
3	BTEX (benzene, toluene, ethylbenzene and xylenes)	mg/kg	<0.009	6	-
4	PCBs (polychlorinated biphenyls, 7 congeners)	mg/kg	<0.021	1	-
5	Mineral oil (C10 to C40)	mg/kg	<5	500	-
6	PAHs (polycyclic aromatic hydrocarbons)	mg/kg	<10	100	-
7	pH	рН	7.71	-	>6
8	ANC (acid neutralisation capacity)	mol/kg		-	-
	Eluate Analysis 10:1				
9	arsenic	mg/kg	<0.005	0.5	2
10	barium	mg/kg	0.0141	20	100
11	cadmium	mg/kg	<0.0008	0.04	1
12	chromium	mg/kg	0.016	0.5	10
13	copper	mg/kg	0.0201	2	50
14	mercury	mg/kg	<0.0001	0.01	0.2
15	molybdenum	mg/kg	<0.03	0.5	10
16	nickel	mg/kg	0.0158	0.4	10
17	lead	mg/kg	0.0036	0.5	10
18	antimony	mg/kg	<0.01	0.06	0.7
19	selenium	mg/kg	<0.01	0.1	0.5
20	zinc	mg/kg	0.0501	4	50
21	chloride	mg/kg	<20	800	15,000
22	fluoride	mg/kg	<5	10	150
23	sulphate	mg/kg	<20	1,000	20,000
24	phenol index	mg/kg	<0.16	1	-
25	DOC (dissolved organic carbon)	mg/kg	35.3	500	800
26	TDS (total dissolved solids)	mg/kg	397	4,000	60,000

Key

User supplied data

Page 6 of 26 JOML9-8020H-XXEFL www.hazwasteonline.com

Classification of sample: TP02-0.50

Non Hazardous Waste Classified as 17 05 04

in the List of Waste

Sample details

Sample name: LoW Code:
TP02-0.50 Chapter:
Sample Depth:
0.50 m Entry:

0.50 m Ent Moisture content:

9.4%

(wet weight correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 9.4% Wet Weight Moisture Correction applied (MC)

#		Determinand EU CLP index	CLP Note	User entered	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	0	TPH (C6 to C40) petroleum group		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>
2	0	confirm TPH has NOT arisen from diesel or petrol		☑							
3	4	antimony { antimony trioxide } 051-005-00-X		0.944	mg/kg	1.197	1.024	mg/kg	0.000102 %	√	
4	4	arsenic { arsenic pentoxide } 033-004-00-6		3.61	mg/kg	1.534	5.017	mg/kg	0.000502 %	√	
5		barium {		17.2	mg/kg	1.233	19.222	mg/kg	0.00192 %	√	
6	-			0.691	mg/kg	1.855	1.161	mg/kg	0.000116 %	√	
7	4	copper { dicopper oxide; copper (I) oxide } 029-002-00-X 215-270-7 1317-39-1		7	mg/kg	1.126	7.14	mg/kg	0.000714 %	✓	
8	4	lead { • lead compounds with the exception of those specified elsewhere in this Annex (worst case) }	1	6.18	mg/kg		5.599	mg/kg	0.00056 %	✓	
9	4	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
10	-	molybdenum { molybdenum(VI) oxide } 042-001-00-9		0.604	mg/kg	1.5	0.821	mg/kg	0.0000821 %	√	
11	4	nickel { nickel sulfate } 7786-81-4		14.3	mg/kg	2.637	34.16	mg/kg	0.00342 %	✓	
12	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		<1	mg/kg	1.405	<1.405	mg/kg	<0.000141 %		<lod< td=""></lod<>
13				18.9	mg/kg	2.469	42.283	mg/kg	0.00423 %	√	
14	4	chromium in chromium(III) compounds { chromium(III) oxide (worst case) } 215-160-9 1308-38-9		7.95	mg/kg	1.462	10.527	mg/kg	0.00105 %	√	

					T								
#			Determinand		Note	User entered data		Conv.	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP			40101			- Value	MC	
15	4	chromium in chromoxide }				<0.6 mg/kg	g 1	1.923	<1.154	mg/kg	<0.000115 %		<lod< td=""></lod<>
		024-001-00-0 naphthalene	215-607-8	1333-82-0	\vdash							Н	
16		·	202-049-5	91-20-3	-	<0.009 mg/k	g		<0.009	mg/kg	<0.0000009 %		<lod< td=""></lod<>
17	0	acenaphthylene	205-917-1	208-96-8		<0.012 mg/kg	g		<0.012	mg/kg	<0.0000012 %		<lod< td=""></lod<>
18	0	acenaphthene	201-469-6	83-32-9		<0.008 mg/kg	g		<0.008	mg/kg	<0.0000008 %		<lod< td=""></lod<>
19	0	fluorene	201-695-5	86-73-7		<0.01 mg/kg	g		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
20	0	phenanthrene	1	85-01-8		<0.015 mg/kg	g		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
21	0	anthracene	204-371-1	120-12-7		<0.016 mg/kg	g		<0.016	mg/kg	<0.0000016 %		<lod< td=""></lod<>
22	0	fluoranthene	205-912-4	206-44-0		<0.017 mg/kg	g		<0.017	mg/kg	<0.0000017 %		<lod< td=""></lod<>
23	0	pyrene	204-927-3	129-00-0		<0.015 mg/kg	g		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
24		benzo[a]anthracen		56-55-3		<0.014 mg/kg	g		<0.014	mg/kg	<0.0000014 %		<lod< td=""></lod<>
25		chrysene	205-923-4	218-01-9	_	<0.01 mg/kg	g		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
26		benzo[b]fluoranthe		205-99-2	_	<0.015 mg/kg	g		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
27		benzo[k]fluoranthei	ne			<0.014 mg/kg	g		<0.014	mg/kg	<0.0000014 %		<lod< td=""></lod<>
		601-036-00-5 benzo[a]pyrene; be	205-916-6	207-08-9	\vdash				<u> </u>			Н	
28		601-032-00-3	200-028-5	50-32-8		<0.015 mg/kg	g		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
29	0	indeno[123-cd]pyre	ene 205-893-2	193-39-5	-	<0.018 mg/kg	g		<0.018	mg/kg	<0.0000018 %		<lod< td=""></lod<>
30		dibenz[a,h]anthrace		53-70-3		<0.023 mg/kg	g		<0.023	mg/kg	<0.0000023 %		<lod< td=""></lod<>
31	0	benzo[ghi]perylene		191-24-2		<0.024 mg/kg	g		<0.024	mg/kg	<0.0000024 %		<lod< td=""></lod<>
32	0	polychlorobiphenyl		1336-36-3		<0.021 mg/kg	g		<0.021	mg/kg	<0.0000021 %		<lod< td=""></lod<>
33		tert-butyl methyl etl 2-methoxy-2-methy	her; MTBE; /lpropane	1634-04-4		<0.0005 mg/kg	g		<0.0005	mg/kg	<0.00000005 %		<lod< td=""></lod<>
34		benzene	216-653-1	71-43-2	+	<0.001 mg/kg	g		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
35		toluene	203-625-9	108-88-3		<0.002 mg/kg	g		<0.002	mg/kg	<0.0000002 %		<lod< td=""></lod<>
36	0	ethylbenzene	202-849-4	100-41-4		<0.001 mg/kg	g		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
37	0	coronene	205-881-7	191-07-1		<0.2 mg/kg	g		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
38	0	pH		PH	T	8.52 pH			8.52	pН	8.52 pH		
		o-xylene; [1] p-xyle	ne: [2] m-xvlene: [3	1	\vdash							Н	
39		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3]		<0.004 mg/k	g		<0.004	mg/kg	<0.0000004 %		<lod< td=""></lod<>
			215-535-7 [4]	1330-20-7 [4]						Total:	0.014 %	Н	
										.o.a.			

Page 8 of 26 JOML9-8020H-XXEFL www.hazwasteonline.com

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

₫ <LOD Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

WAC results for sample: TP02-0.50

WAC Settings: samples in this Job constitute a single population.

WAC limits used to evaluate this sample: "Ireland"
The WAC used in this report are the WAC defined for the inert and non-hazardous classes of landfill in the Republic of Ireland. You should check the actual acceptance criteria when the disposal site is identified as they may differ from the generic WAC used in this report.

The sample PASSES the Inert (Inert waste landfill) criteria.

The sample PASSES the Non Haz (Non hazardous waste landfill) criteria.

WAC Determinands

	Solid Waste Analysis			Landfill Waste Acce	ptance Criteria Limits
#	Determinand		User entered data	Inert waste landfill	Non hazardous waste landfill
1	TOC (total organic carbon)	%	0.479	3	5
2	LOI (loss on ignition)	%	2.09	-	-
3	BTEX (benzene, toluene, ethylbenzene and xylenes)	mg/kg	<0.008	6	-
4	PCBs (polychlorinated biphenyls, 7 congeners)	mg/kg	<0.021	1	-
5	Mineral oil (C10 to C40)	mg/kg	<5	500	-
6	PAHs (polycyclic aromatic hydrocarbons)	mg/kg	<10	100	-
7	рН	рН	8.52	-	>6
8	ANC (acid neutralisation capacity)	mol/kg		-	-
	Eluate Analysis 10:1				
9	arsenic	mg/kg	<0.005	0.5	2
10	barium	mg/kg	0.0207	20	100
11	cadmium	mg/kg	<0.0008	0.04	1
12	chromium	mg/kg	<0.01	0.5	10
13	copper	mg/kg	0.0154	2	50
14	mercury	mg/kg	0.0001	0.01	0.2
15	molybdenum	mg/kg	<0.03	0.5	10
16	nickel	mg/kg	0.0045	0.4	10
17	lead	mg/kg	<0.002	0.5	10
18	antimony	mg/kg	<0.01	0.06	0.7
19	selenium	mg/kg	<0.01	0.1	0.5
20	zinc	mg/kg	0.0288	4	50
21	chloride	mg/kg	23	800	15,000
22	fluoride	mg/kg	5.1	10	150
23	sulphate	mg/kg	<20	1,000	20,000
24	phenol index	mg/kg	<0.16	1	-
25	DOC (dissolved organic carbon)	mg/kg	38.8	500	800
26	TDS (total dissolved solids)	mg/kg	905	4,000	60,000

Key

User supplied data

Page 10 of 26 JOML9-8020H-XXEFL www.hazwasteonline.com

Classification of sample: TP03-0.50

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

LoW Code: Sample name: TP03-0.50 Chapter: Sample Depth: 0.50 m Entry:

Moisture content:

16%

(wet weight correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 16% Wet Weight Moisture Correction applied (MC)

#			minand Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	0	TPH (C6 to C40) petroleum	group	TPH		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< th=""></lod<>
2	0	confirm TPH has NOT arise	en from die	sel or petrol		Ø							
3	4	antimony { antimony trioxid	•	1309-64-4		0.749	mg/kg	1.197	0.753	mg/kg	0.0000753 %	✓	
4	4	arsenic { arsenic pentoxide 033-004-00-6 215-116	•	1303-28-2		4.46	mg/kg	1.534	5.747	mg/kg	0.000575 %	✓	
5	4	barium { • barium sulphide 016-002-00-X		21109-95-5		22.8	mg/kg	1.233	23.624	mg/kg	0.00236 %	✓	
6	4	cadmium { cadmium sulfate 048-009-00-9 233-331		10124-36-4		0.795	mg/kg	1.855	1.238	mg/kg	0.000124 %	✓	
7	4	copper { dicopper oxide; co 029-002-00-X 215-270		i <mark>de</mark> } 1317-39-1		9.02	mg/kg	1.126	8.531	mg/kg	0.000853 %	✓	
8		lead { lead compounds v specified elsewhere in this 082-001-00-6	vith the exc Annex (wo	ception of those rst case) }	1	8.86	mg/kg		7.442	mg/kg	0.000744 %	✓	
9		mercury { mercury dichloric 080-010-00-X 231-299		7487-94-7		<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
10	4	molybdenum { molybdenun 042-001-00-9 215-204	. ,	} 1313-27-5		0.601	mg/kg	1.5	0.757	mg/kg	0.0000757 %	✓	
11	4	nickel { nickel sulfate } 028-009-00-5 232-104	9	7786-81-4		16.9	mg/kg	2.637	37.43	mg/kg	0.00374 %	✓	
12	4	selenium { selenium compo cadmium sulphoselenide al elsewhere in this Annex } 034-002-00-8				<1	mg/kg	1.405	<1.405	mg/kg	<0.000141 %		<lod< th=""></lod<>
13	4	zinc { zinc sulphate } 030-006-00-9		7446-19-7 [1] 7733-02-0 [2]		29.2	mg/kg	2.469	60.567	mg/kg	0.00606 %	✓	
14	4	chromium in chromium(III) chromium(III) oxide (worst o	case)}	s { •		10.4	mg/kg	1.462	12.768	mg/kg	0.00128 %	✓	

					Т								
#			Determinand		Note	User entered data		Conv.	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP		ľ	dotoi				MC	
15	4	chromium in chromoxide }				<0.6 mg/kg	g 1	1.923	<1.154	mg/kg	<0.000115 %		<lod< td=""></lod<>
		}	215-607-8	1333-82-0	\vdash							Н	
16		naphthalene 601-052-00-2	202-049-5	91-20-3	-	<0.009 mg/kg	g		<0.009	mg/kg	<0.0000009 %		<lod< td=""></lod<>
	_	acenaphthylene	202-049-5	91-20-3	\vdash							Н	
17	0		205-917-1	208-96-8		<0.012 mg/kg	g		<0.012	mg/kg	<0.0000012 %		<lod< td=""></lod<>
18	0	acenaphthene	201-469-6	83-32-9		<0.008 mg/kg	g		<0.008	mg/kg	<0.0000008 %		<lod< td=""></lod<>
19	0	fluorene	201-695-5	86-73-7		<0.01 mg/k	g		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
20	0	phenanthrene	1	1		<0.015 mg/k	9		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
			201-581-5	85-01-8	1		9			9/9			
21	0	anthracene	204-371-1	120-12-7		<0.016 mg/kg	g		<0.016	mg/kg	<0.0000016 %		<lod< td=""></lod<>
22	0	fluoranthene	205-912-4	206-44-0		<0.017 mg/k	g		<0.017	mg/kg	<0.0000017 %		<lod< td=""></lod<>
23	0	pyrene				<0.015 mg/kg	g		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
		benzo[a]anthracen	204-927-3	129-00-0	-							Н	
24		601-033-00-9	200-280-6	56-55-3		<0.014 mg/k	g		<0.014	mg/kg	<0.0000014 %		<lod< td=""></lod<>
25		chrysene 601-048-00-0	205-923-4	218-01-9		<0.01 mg/kg	g		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
26		benzo[b]fluoranthe	ne 205-911-9	205-99-2		<0.015 mg/kg	g		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
27		benzo[k]fluoranthei	ne			<0.014 mg/k	g		<0.014	mg/kg	<0.0000014 %		<lod< td=""></lod<>
		-	205-916-6	207-08-9	-							Н	
28		benzo[a]pyrene; be 601-032-00-3	200-028-5	50-32-8	-	<0.015 mg/kg	g		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
29		indeno[123-cd]pyre		15.5.5.5		10.040//-			-0.040		***************************************		4LOD
29			205-893-2	193-39-5		<0.018 mg/k	9		<0.018	mg/kg	<0.0000018 %		<lod< td=""></lod<>
30		dibenz[a,h]anthrace	ene 200-181-8	53-70-3		<0.023 mg/k	g		<0.023	mg/kg	<0.0000023 %		<lod< td=""></lod<>
31	0	benzo[ghi]perylene				<0.024 mg/kg	7		<0.024	mg/kg	<0.0000024 %		<lod< td=""></lod<>
31			205-883-8	191-24-2		<0.024 Hig/K	9		~ 0.024	ilig/kg	<0.0000024 / ₈		\LOD
32	0	polychlorobiphenyl	s; PCB			<0.021 mg/k	a		<0.021	mg/kg	<0.0000021 %		<lod< td=""></lod<>
		}	215-648-1	1336-36-3	_							Ш	
33		tert-butyl methyl etl 2-methoxy-2-methy	/lpropane			<0.0005 mg/kg	g		<0.0005	mg/kg	<0.00000005 %		<lod< td=""></lod<>
			216-653-1	1634-04-4	\vdash							H	
34		benzene 601-020-00-8	200-753-7	71-43-2	L	<0.001 mg/kg	g		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
35		toluene 601-021-00-3	203-625-9	108-88-3	_	<0.002 mg/kg	g		<0.002	mg/kg	<0.0000002 %		<lod< td=""></lod<>
36	0	ethylbenzene			_	<0.001 mg/k	g		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
	0	601-023-00-4 coronene	202-849-4	100-41-4	\vdash			-				H	
37			205-881-7	191-07-1		<0.2 mg/k	g		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
38	0	pH		PH		8.42 pH			8.42	рН	8.42 pH		
		o-xylene; [1] p-xyle	ne: [2] m-xvlene: [:		+							Н	
39		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3]		<0.004 mg/k	g		<0.004	mg/kg	<0.0000004 %		<lod< td=""></lod<>
			215-535-7 [4]	1330-20-7 [4]						Total:	0.0172 %	Н	
				-						iUlal.	0.0172 /0		

Page 12 of 26 JOML9-8020H-XXEFL www.hazwasteonline.com

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

Speciated Determinand **LOD**Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

WAC results for sample: TP03-0.50

WAC Settings: samples in this Job constitute a single population.

WAC limits used to evaluate this sample: "Ireland"
The WAC used in this report are the WAC defined for the inert and non-hazardous classes of landfill in the Republic of Ireland. You should check the actual acceptance criteria when the disposal site is identified as they may differ from the generic WAC used in this report.

The sample PASSES the Inert (Inert waste landfill) criteria.

The sample PASSES the Non Haz (Non hazardous waste landfill) criteria.

WAC Determinands

	Solid Waste Analysis			Landfill Waste Acce	ptance Criteria Limits
#	Determinand		User entered data	Inert waste landfill	Non hazardous waste landfill
1	TOC (total organic carbon)	%	1.06	3	5
2	LOI (loss on ignition)	%	3.9	-	-
3	BTEX (benzene, toluene, ethylbenzene and xylenes)	mg/kg	<0.008	6	-
4	PCBs (polychlorinated biphenyls, 7 congeners)	mg/kg	<0.021	1	-
5	Mineral oil (C10 to C40)	mg/kg	<5	500	-
6	PAHs (polycyclic aromatic hydrocarbons)	mg/kg	<10	100	-
7	рН	рН	8.42	-	>6
8	ANC (acid neutralisation capacity)	mol/kg		-	-
	Eluate Analysis 10:1	,			
9	arsenic	mg/kg	<0.005	0.5	2
10	barium	mg/kg	0.0369	20	100
11	cadmium	mg/kg	<0.0008	0.04	1
12	chromium	mg/kg	0.0122	0.5	10
13	copper	mg/kg	0.02	2	50
14	mercury	mg/kg	<0.0001	0.01	0.2
15	molybdenum	mg/kg	<0.03	0.5	10
16	nickel	mg/kg	0.0094	0.4	10
17	lead	mg/kg	0.0024	0.5	10
18	antimony	mg/kg	<0.01	0.06	0.7
19	selenium	mg/kg	<0.01	0.1	0.5
20	zinc	mg/kg	0.0182	4	50
21	chloride	mg/kg	56	800	15,000
22	fluoride	mg/kg	<5	10	150
23	sulphate	mg/kg	<20	1,000	20,000
24	phenol index	mg/kg	<0.16	1	-
25	DOC (dissolved organic carbon)	mg/kg	38	500	800
26	TDS (total dissolved solids)	mg/kg	988	4,000	60,000

Key

User supplied data

Page 14 of 26 JOML9-8020H-XXEFL www.hazwasteonline.com

Classification of sample: TP04-0.50

Non Hazardous Waste Classified as 17 05 04

in the List of Waste

Sample details

LoW Code: Sample name: TP04-0.50 Chapter: Sample Depth: 0.50 m

Entry:

Moisture content:

16%

(wet weight correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 16% Wet Weight Moisture Correction applied (MC)

#		Determinand EU CLP index	AS Number	CLP Note	User entered o	lata	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	0	TPH (C6 to C40) petroleum group			<10 n	ng/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>
2	0	confirm TPH has NOT arisen from diesel o	r petrol		Ø							
3	4)-64-4		<0.6 n	ng/kg	1.197	<0.718	mg/kg	<0.0000718 %		<lod< td=""></lod<>
4	4	arsenic { arsenic pentoxide } 033-004-00-6	3-28-2		12.7 n	ng/kg	1.534	16.363	mg/kg	0.00164 %	✓	
5	4	barium {	19-95-5		53.8 n	ng/kg	1.233	55.744	mg/kg	0.00557 %	√	
6	4		24-36-4		1.22 n	ng/kg	1.855	1.901	mg/kg	0.00019 %	√	
7	4		7-39-1		24.5 n	ng/kg	1.126	23.171	mg/kg	0.00232 %	✓	
8	4	lead { • lead compounds with the exception specified elsewhere in this Annex (worst can be seen as 10.00 cm.)	on of those ase)}	1	28.6 n	ng/kg		24.024	mg/kg	0.0024 %	✓	
9	4	mercury { mercury dichloride }	7-94-7		<0.1 n	ng/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
10	4	molybdenum { molybdenum(VI) oxide } 042-001-00-9 215-204-7 1313	3-27-5		1.86 n	ng/kg	1.5	2.344	mg/kg	0.000234 %	✓	
11	4	nickel { nickel sulfate } 028-009-00-5 232-104-9 7786	6-81-4		51.4 n	ng/kg	2.637	113.842	mg/kg	0.0114 %	✓	
12	4	selenium { selenium compounds with the e cadmium sulphoselenide and those specifielsewhere in this Annex }			<1 n	ng/kg	1.405	<1.405	mg/kg	<0.000141 %		<lod< td=""></lod<>
13			6-19-7 [1] 8-02-0 [2]		72.8 n	ng/kg	2.469	151.002	mg/kg	0.0151 %	✓	
14	4	chromium(III) oxide (worst case) }	3-38-9		22.7 n	ng/kg	1.462	27.869	mg/kg	0.00279 %	✓	

					Т								
#			Determinand		Note	User entered data	1	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP							MC	
15	4	chromium in chromoxide }		, ,		<0.6 mg/k	(g	1.923	<1.154	mg/kg	<0.000115 %		<lod< td=""></lod<>
		-	215-607-8	1333-82-0	-							Н	
16		naphthalene 601-052-00-2	202-049-5	91-20-3		<0.009 mg/k	(g		<0.009	mg/kg	<0.0000009 %		<lod< td=""></lod<>
	0	acenaphthylene	202-049-3	91-20-3	\vdash							Н	
17			205-917-1	208-96-8		<0.012 mg/k	(g		<0.012	mg/kg	<0.0000012 %		<lod< td=""></lod<>
18	0	acenaphthene	201-469-6	83-32-9	-	<0.008 mg/k	(g		<0.008	mg/kg	<0.0000008 %		<lod< td=""></lod<>
19	0	fluorene	201-695-5	86-73-7		<0.01 mg/k	(g		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
20	0	phenanthrene	201-095-5	1		<0.015 mg/k	(a		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
			201-581-5	85-01-8		0.0.10g/.	.9			9/9			
21	0	anthracene	204-371-1	120-12-7		<0.016 mg/k	(g		<0.016	mg/kg	<0.0000016 %		<lod< td=""></lod<>
22	0	fluoranthene	205-912-4	206-44-0		<0.017 mg/k	(g		<0.017	mg/kg	<0.0000017 %		<lod< td=""></lod<>
23	0	pyrene	204-927-3			<0.015 mg/k	cg		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
		benzo[a]anthracen		129-00-0								Н	
24		601-033-00-9	200-280-6	56-55-3		<0.014 mg/k	(g		<0.014	mg/kg	<0.0000014 %		<lod< td=""></lod<>
25		chrysene 601-048-00-0	205-923-4	218-01-9	-	<0.01 mg/k	g		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
26		benzo[b]fluoranthe	ne 205-911-9	205-99-2		<0.015 mg/k	(g		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
27		benzo[k]fluoranthei	ne			<0.014 mg/k	(g		<0.014	mg/kg	<0.0000014 %		<lod< td=""></lod<>
			205-916-6	207-08-9	-							Ш	
28		benzo[a]pyrene; be 601-032-00-3	enzo[def]chrysene 200-028-5	50-32-8	-	<0.015 mg/k	(g		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
		indeno[123-cd]pyre		p0-32-0								Н	
29	Ĭ		205-893-2	193-39-5	1	<0.018 mg/k	g		<0.018	mg/kg	<0.0000018 %		<lod< td=""></lod<>
30		dibenz[a,h]anthrace	ene 200-181-8	53-70-3		<0.023 mg/k	(g		<0.023	mg/kg	<0.0000023 %		<lod< td=""></lod<>
		benzo[ghi]perylene		p3-70-3								Н	
31			205-883-8	191-24-2		<0.024 mg/k	(g		<0.024	mg/kg	<0.0000024 %		<lod< td=""></lod<>
32	0	polychlorobiphenyl	s; PCB			<0.021 mg/k	(a		<0.021	mg/kg	<0.0000021 %		<lod< td=""></lod<>
		602-039-00-4	215-648-1	1336-36-3		0.021g/.	.9					Ш	
33		tert-butyl methyl etl 2-methoxy-2-methy	/lpropane			<0.0005 mg/k	(g		<0.0005	mg/kg	<0.00000005 %		<lod< td=""></lod<>
			216-653-1	1634-04-4	-							H	
34		benzene 601-020-00-8	200-753-7	71-43-2		<0.001 mg/k	(g		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
35		toluene 601-021-00-3	203-625-9	108-88-3		<0.002 mg/k	g		<0.002	mg/kg	<0.0000002 %		<lod< td=""></lod<>
36	0	ethylbenzene				<0.001 mg/k	(g		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
	_	601-023-00-4 coronene	202-849-4	100-41-4	-							H	
37	0		205-881-7	191-07-1		<0.2 mg/k	(g		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
38	0	рН		PH	-	8.23 pH			8.23	рН	8.23 pH		
		o-xylene; [1] p-xyle	ne; [2] m-xylene; [1	T							П	
39		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3]		<0.004 mg/k	(g		<0.004	mg/kg	<0.0000004 %		<lod< td=""></lod<>
			215-535-7 [4]	1330-20-7 [4]						Total:	0.043 %	Н	
			,							iotal.	U.0-10 /0		

Page 16 of 26 JOML9-8020H-XXEFL www.hazwasteonline.com

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

Speciated Determinand **LOD**Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

WAC results for sample: TP04-0.50

WAC Settings: samples in this Job constitute a single population.

WAC limits used to evaluate this sample: "Ireland"
The WAC used in this report are the WAC defined for the inert and non-hazardous classes of landfill in the Republic of Ireland. You should check the actual acceptance criteria when the disposal site is identified as they may differ from the generic WAC used in this report.

The sample PASSES the Inert (Inert waste landfill) criteria.

The sample PASSES the Non Haz (Non hazardous waste landfill) criteria.

WAC Determinands

	Solid Waste Analysis			Landfill Waste Acce	ptance Criteria Limits
#	Determinand		User entered data	Inert waste landfill	Non hazardous waste landfill
1	TOC (total organic carbon)	%	0.724	3	5
2	LOI (loss on ignition)	%	5.57	-	-
3	BTEX (benzene, toluene, ethylbenzene and xylenes)	mg/kg	<0.008	6	-
4	PCBs (polychlorinated biphenyls, 7 congeners)	mg/kg	<0.021	1	-
5	Mineral oil (C10 to C40)	mg/kg	<5	500	-
6	PAHs (polycyclic aromatic hydrocarbons)	mg/kg	<10	100	-
7	рН	рН	8.23	-	>6
8	ANC (acid neutralisation capacity)	mol/kg		-	-
	Eluate Analysis 10:1				
9	arsenic	mg/kg	<0.005	0.5	2
10	barium	mg/kg	0.018	20	100
11	cadmium	mg/kg	<0.0008	0.04	1
12	chromium	mg/kg	<0.01	0.5	10
13	copper	mg/kg	0.0172	2	50
14	mercury	mg/kg	<0.0001	0.01	0.2
15	molybdenum	mg/kg	<0.03	0.5	10
16	nickel	mg/kg	0.0055	0.4	10
17	lead	mg/kg	0.0022	0.5	10
18	antimony	mg/kg	<0.01	0.06	0.7
19	selenium	mg/kg	<0.01	0.1	0.5
20	zinc	mg/kg	0.0521	4	50
21	chloride	mg/kg	<20	800	15,000
22	fluoride	mg/kg	5.25	10	150
23	sulphate	mg/kg	<20	1,000	20,000
24	phenol index	mg/kg	<0.16	1	-
25	DOC (dissolved organic carbon)	mg/kg	33.5	500	800
26	TDS (total dissolved solids)	mg/kg	942	4,000	60,000

Key

User supplied data

Page 18 of 26 JOML9-8020H-XXEFL www.hazwasteonline.com

17: Construction and Demolition Wastes (including excavated soil

Classification of sample: TP05-0.50

Non Hazardous Waste Classified as 17 05 04

in the List of Waste

Sample details

LoW Code: Sample name: TP05-0.50 Chapter: Sample Depth: 0.50 m Entry:

from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05

03)

Moisture content:

11%

(wet weight correction)

Hazard properties

None identified

Determinands

Moisture content: 11% Wet Weight Moisture Correction applied (MC)

#		Determinand EU CLP index number CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	0	TPH (C6 to C40) petroleum group		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>
2	0	confirm TPH has NOT arisen from diesel or petrol		☑							
3	æ	antimony { antimony trioxide } 051-005-00-X		1.04	mg/kg	1.197	1.108	mg/kg	0.000111 %	✓	
4	e#	arsenic { arsenic pentoxide } 033-004-00-6		3.03	mg/kg	1.534	4.136	mg/kg	0.000414 %	✓	
5	æ	barium { barium sulphide }		15.4	mg/kg	1.233	16.906	mg/kg	0.00169 %	✓	
6	4	cadmium { cadmium sulfate } 048-009-00-9 233-331-6 10124-36-4		0.785	mg/kg	1.855	1.296	mg/kg	0.00013 %	✓	
7	4	copper { dicopper oxide; copper (I) oxide } 029-002-00-X 215-270-7 1317-39-1		5.24	mg/kg	1.126	5.251	mg/kg	0.000525 %	✓	
8	ď	lead (lead compounds with the exception of those specified elsewhere in this Annex (worst case) }	1	5.9	mg/kg		5.251	mg/kg	0.000525 %	✓	
9	"	mercury { mercury dichloride } 080-010-00-X		<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
		molybdenum { molybdenum(VI) oxide } 042-001-00-9		0.503	mg/kg	1.5	0.672	mg/kg	0.0000672 %	✓	
11	æ	nickel { nickel sulfate } 028-009-00-5 232-104-9 7786-81-4		10.9	mg/kg	2.637	25.578	mg/kg	0.00256 %	✓	
12	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }	f	<1	mg/kg	1.405	<1.405	mg/kg	<0.000141 %		<lod< td=""></lod<>
13		zinc { zinc sulphate } 030-006-00-9		18.2	mg/kg	2.469	39.998	mg/kg	0.004 %	√	
14	4	chromium in chromium(III) compounds { chromium(III) oxide (worst case) }		7.1	mg/kg	1.462	9.236	mg/kg	0.000924 %	✓	

$\overline{}$								ſ					
#			Determinand		Note	User entered data		Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP			dotoi				MC	
15	æ 🎖	chromium in chromoxide }				<0.6 mg/k	g	1.923	<1.154	mg/kg	<0.000115 %		<lod< td=""></lod<>
		-	215-607-8	1333-82-0	\vdash							Н	
16		naphthalene 601-052-00-2	202-049-5	91-20-3	-	<0.009 mg/k	g		<0.009	mg/kg	<0.0000009 %		<lod< td=""></lod<>
	0	acenaphthylene	202-049-5	51-20-3	+							Н	
17			205-917-1	208-96-8		<0.012 mg/k	g		<0.012	mg/kg	<0.0000012 %		<lod< td=""></lod<>
18	0	acenaphthene	201-469-6	83-32-9		<0.008 mg/k	g		<0.008	mg/kg	<0.0000008 %		<lod< td=""></lod<>
19	0	fluorene				<0.01 mg/k	g		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
			201-695-5	86-73-7	-				<u> </u>			Н	
20	0	phenanthrene	201-581-5	85-01-8		<0.015 mg/k	g		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
21	0	anthracene	204-371-1	120-12-7		<0.016 mg/k	g		<0.016	mg/kg	<0.0000016 %		<lod< td=""></lod<>
22	0	fluoranthene	205-912-4	206-44-0		<0.017 mg/k	g		<0.017	mg/kg	<0.0000017 %		<lod< td=""></lod<>
23	0	pyrene	204-927-3	129-00-0		<0.015 mg/k	g		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
24		benzo[a]anthracen		120 00 0		<0.014 mg/k	a		<0.014	mg/kg	<0.0000014 %	П	<lod< td=""></lod<>
		601-033-00-9 chrysene	200-280-6	56-55-3	-							H	
25			205-923-4	218-01-9		<0.01 mg/k	g		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
26		benzo[b]fluoranthe	ne 205-911-9	205-99-2		<0.015 mg/k	g		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
27		benzo[k]fluoranthei	ne 205-916-6	207-08-9		<0.014 mg/k	g		<0.014	mg/kg	<0.0000014 %		<lod< td=""></lod<>
		benzo[a]pyrene; be		<u> </u>								Н	
28		601-032-00-3	200-028-5	50-32-8		<0.015 mg/k	g		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
29	0	indeno[123-cd]pyre		1400 00 5		<0.018 mg/k	g		<0.018	mg/kg	<0.0000018 %		<lod< td=""></lod<>
		dibenz[a,h]anthrac	205-893-2 ene	193-39-5								Н	
30			200-181-8	53-70-3	-	<0.023 mg/k	g		<0.023	mg/kg	<0.0000023 %		<lod< td=""></lod<>
31	0	benzo[ghi]perylene	•			<0.024 mg/k	n	Ì	<0.024	mg/kg	<0.0000024 %		<lod< td=""></lod<>
Ŭ.			205-883-8	191-24-2		10.021 mg/m	9		-0.021		-0.0000021 /0	Ш	-205
32	0	polychlorobiphenyl	s; PCB			<0.021 mg/k	g		<0.021	mg/kg	<0.0000021 %		<lod< td=""></lod<>
		-	215-648-1	1336-36-3	\vdash							Н	
33		tert-butyl methyl etl 2-methoxy-2-methy	/lpropane	14004.04.4		<0.0005 mg/k	g		<0.0005	mg/kg	<0.00000005 %		<lod< td=""></lod<>
			216-653-1	1634-04-4	+							Н	
34		benzene 601-020-00-8	200-753-7	71-43-2	-	<0.001 mg/k	g		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
35		toluene	203-625-9	108-88-3		<0.001 mg/k	g		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
36	0	ethylbenzene				<0.001 mg/k	g		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
_	0	601-023-00-4 coronene	202-849-4	100-41-4	1							H	
37			205-881-7	191-07-1		<0.2 mg/k	g		<0.2	mg/kg	<0.00002 %	Ц	<lod< td=""></lod<>
38	0	pH		PH	-	8.52 pH			8.52	рН	8.52 pH		
		o-xylene; [1] p-xyle	ne: [2] m-xvlene: [:	1	+							Н	
39		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3]		<0.004 mg/k	g		<0.004	mg/kg	<0.0000004 %		<lod< td=""></lod<>
			215-535-7 [4]	1330-20-7 [4]						Total:	0.0123 %	H	
			,							iotal.	0.0120 /0		

Page 20 of 26 JOML9-8020H-XXEFL www.hazwasteonline.com

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

₫ <LOD Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

WAC results for sample: TP05-0.50

WAC Settings: samples in this Job constitute a single population.

WAC limits used to evaluate this sample: "Ireland"
The WAC used in this report are the WAC defined for the inert and non-hazardous classes of landfill in the Republic of Ireland. You should check the actual acceptance criteria when the disposal site is identified as they may differ from the generic WAC used in this report.

The sample PASSES the Inert (Inert waste landfill) criteria.

The sample PASSES the Non Haz (Non hazardous waste landfill) criteria.

WAC Determinands

	Solid Waste Analysis	Landfill Waste Acceptance Criteria Limits			
#	Determinand	User entered data	Inert waste landfill	Non hazardous waste landfill	
1	TOC (total organic carbon)	%	0.506	3	5
2	LOI (loss on ignition)	%	2.15	-	-
3	BTEX (benzene, toluene, ethylbenzene and xylenes)	mg/kg	<0.007	6	-
4	PCBs (polychlorinated biphenyls, 7 congeners)	mg/kg	<0.021	1	-
5	Mineral oil (C10 to C40)	mg/kg	<5	500	-
6	PAHs (polycyclic aromatic hydrocarbons)	mg/kg	<10	100	-
7	рН	рН	8.52	-	>6
8	ANC (acid neutralisation capacity)	mol/kg		-	-
	Eluate Analysis 10:1				
9	arsenic	mg/kg	<0.005	0.5	2
10	barium	mg/kg	0.0754	20	100
11	cadmium	mg/kg	0.0011	0.04	1
12	chromium	mg/kg	0.034	0.5	10
13	copper	mg/kg	0.0258	2	50
14	mercury	mg/kg	<0.0001	0.01	0.2
15	molybdenum	mg/kg	<0.03	0.5	10
16	nickel	mg/kg	0.0369	0.4	10
17	lead	mg/kg	0.0092	0.5	10
18	antimony	mg/kg	<0.01	0.06	0.7
19	selenium	mg/kg	<0.01	0.1	0.5
20	zinc	mg/kg	0.0782	4	50
21	chloride	mg/kg	<20	800	15,000
22	fluoride	mg/kg	<5	10	150
23	sulphate	mg/kg	<20	1,000	20,000
24	phenol index	mg/kg	<0.16	1	-
25	DOC (dissolved organic carbon)	mg/kg	50.6	500	800
26	TDS (total dissolved solids)	mg/kg	620	4,000	60,000

Key

User supplied data

Page 22 of 26 JOML9-8020H-XXEFL www.hazwasteonline.com

Appendix A: Classifier defined and non EU CLP determinands

• TPH (C6 to C40) petroleum group (CAS Number: TPH)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013

Data source: WM3 1st Edition 2015 Data source date: 25 May 2015

Hazard Statements: Flam. Liq. 3; H226 , Asp. Tox. 1; H304 , STOT RE 2; H373 , Muta. 1B; H340 , Carc. 1B; H350 , Repr. 2; H361d , Aquatic Chronic 2;

H411

confirm TPH has NOT arisen from diesel or petrol

Description/Comments: Chapter 3, section 4b requires a positive confirmation for benzo[a]pyrene to be used as a marker in evaluating Carc. 1B; H350

(HP 7) and Muta. 1B; H340 (HP 11) Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: None.

barium sulphide (EC Number: 244-214-4, CAS Number: 21109-95-5)

EU CLP index number: 016-002-00-X

Description/Comments:

Additional Hazard Statement(s): EUH031 >= 0.8 % Reason for additional Hazards Statement(s):

14 Dec 2015 - EUH031 >= 0.8 % hazard statement sourced from: WM3, Table C12.2

lead compounds with the exception of those specified elsewhere in this Annex (worst case)

EU CLP index number: 082-001-00-6

Description/Comments: Worst Case: IARC considers lead compounds Group 2A; Probably carcinogenic to humans; Lead REACH Consortium, following CLP protocols, considers lead compounds from smelting industries, flue dust and similar to be Carcinogenic category 1A

Additional Hazard Statement(s): Carc. 1A; H350 Reason for additional Hazards Statement(s):

03 Jun 2015 - Carc. 1A; H350 hazard statement sourced from: IARC Group 2A (Sup 7, 87) 2006; Lead REACH Consortium www.reach-lead.eu/substanceinformation.html (worst case lead compounds). Review date 29/09/2015

chromium(III) oxide (worst case) (EC Number: 215-160-9, CAS Number: 1308-38-9)

Description/Comments: Data from C&L Inventory Database

Data source: https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/33806

Data source date: 17 Jul 2015

Hazard Statements: Acute Tox. 4; H332 , Acute Tox. 4; H302 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315 , Resp. Sens. 1; H334 , Skin Sens. 1; H317 , Repr. 1B; H360FD , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Acute Tox. 4; H302 , Acute Tox. 1; H330 , Acute Tox. 1; H310 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315

acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410 , Aquatic Chronic 2;

H411

• fluorene (EC Number: 201-695-5, CAS Number: 86-73-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

Hazard Statements: Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

Hazard Statements: Acute Tox. 4; H302 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Carc. 2; H351 , Skin Sens. 1; H317 , Aquatic Acute 1; H400 , Aquatic

Chronic 1; H410, Skin Irrit. 2; H315

anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Eye Irrit. 2; H319, STOT SE 3; H335, Skin Irrit. 2; H315, Skin Sens. 1; H317, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

• fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21 Aug 2015

Hazard Statements: Acute Tox. 4; H302, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

pyrene (EC Number: 204-927-3, CAS Number: 129-00-0)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21 Aug 2015

Hazard Statements: Skin Irrit. 2; H315, Eye Irrit. 2; H319, STOT SE 3; H335, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

• indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015 Hazard Statements: Carc. 2; H351

• benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 23 Jul 2015

Hazard Statements: Aquatic Acute 1; H400, Aquatic Chronic 1; H410

polychlorobiphenyls; PCB (EC Number: 215-648-1, CAS Number: 1336-36-3)

EU CLP index number: 602-039-00-4

Description/Comments: Worst Case: IARC considers PCB Group 1; Carcinogenic to humans;

POP specific threshold from ATP1 (Regulation 756/2010/EU) to POPs Regulation (Regulation 850/2004/EC). Where applicable, the calculation method laid down in European standards EN 12766-1 and EN 12766-2 shall be applied.

Additional Hazard Statement(s): Carc. 1A; H350 Reason for additional Hazards Statement(s):

29 Sep 2015 - Carc. 1A; H350 hazard statement sourced from: IARC Group 1 (23, Sup 7, 100C) 2012

ethylbenzene (EC Number: 202-849-4, CAS Number: 100-41-4)

EU CLP index number: 601-023-00-4

Description/Comments:

Additional Hazard Statement(s): Carc. 2; H351 Reason for additional Hazards Statement(s):

03 Jun 2015 - Carc. 2; H351 hazard statement sourced from: IARC Group 2B (77) 2000

[®] coronene (EC Number: 205-881-7, CAS Number: 191-07-1)

Description/Comments: Data from C&L Inventory Database; no entries in Registered Substances or Pesticides Properties databases; SDS: Sigma Aldrich, 1907/2006 compliant, dated 2012 - no entries; IARC – Group 3, not carcinogenic.

Data source: http://clp-inventory.echa.europa.eu/SummaryOfClassAndLabelling.aspx?SubstanceID=17010&HarmOnly=no?fc=true&lang=en

Data source date: 16 Jun 2014 Hazard Statements: STOT SE 2; H371

pH (CAS Number: PH)

Description/Comments: Appendix C4
Data source: WM3 1st Edition 2015
Data source date: 25 May 2015
Hazard Statements: None.

Appendix B: Rationale for selection of metal species

antimony {antimony trioxide}

Worst case scenario.

arsenic {arsenic pentoxide}

Arsenic pentoxide used as most hazardous species.

Page 24 of 26 JOML9-8020H-XXEFL www.hazwasteonline.com

barium {barium sulphide}

Chromium VI at limits of detection. Barium sulphide used as the next most hazardous species. No chromate present.

cadmium {cadmium sulfate}

Cadmium sulphate used as the most hazardous species.

copper {dicopper oxide; copper (I) oxide}

Reasonable case CLP species based on hazard statements/molecular weight and insolubility in water. Worse case copper sulphate is very soluble and likely to have been leached away if ever present and/or not enough soluble sulphate detected.

lead (lead compounds with the exception of those specified elsewhere in this Annex (worst case))

Chromium VI at limits of detection. Lead compounds used as the next most hazardous species. No chromate present.

mercury {mercury dichloride}

Worst case CLP species based on hazard statements/molecular weight

molybdenum {molybdenum(VI) oxide}

Worst case CLP species based on hazard statements/molecular weight.

nickel {nickel sulfate}

Chromium VI at limits of detection. Nickel sulphate used as the next most hazardous species. No chromate present.

selenium (selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex)

Harmonised group entry used as most reasonable case. Pigment cadmium sulphoselenide not likely to be present in this soil. No evidence for the other CLP entries: sodium selenite, nickel II selenite and nickel selenide, to be present in this soil.

zinc {zinc sulphate}

Chromium VI at limits of detection. Zinc sulphate used as the next most hazardous species. No chromate present.

chromium in chromium(III) compounds {chromium(III) oxide (worst case)}

Reasonable case species based on hazard statements/molecular weight. Industrial sources include: tanning, pigment in paint, inks and glass

chromium in chromium(VI) compounds {chromium(VI) oxide}

Worst case CLP species based on hazard statements/molecular weight. Industrial sources include: production stainless steel, electroplating, wood preservation, anti-corrosion agents or coatings, pigments.

Appendix C: Version

HazWasteOnline Classification Engine: WM3 1st Edition v1.1.NI - Jan 2021
HazWasteOnline Classification Engine Version: 2024.332.6362.11667 (27 Nov 2024)
HazWasteOnline Database: 2024.331.6361.11659 (26 Nov 2024)

www.hazwasteonline.com JOML9-8020H-XXEFL Page 25 of 26

This classification utilises the following guidance and legislation:

WM3 v1.1.NI - Waste Classification - 1st Edition v1.1.NI - Jan 2021

CLP Regulation - Regulation 1272/2008/EC of 16 December 2008

1st ATP - Regulation 790/2009/EC of 10 August 2009

2nd ATP - Regulation 286/2011/EC of 10 March 2011

3rd ATP - Regulation 618/2012/EU of 10 July 2012

4th ATP - Regulation 487/2013/EU of 8 May 2013

Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013

5th ATP - Regulation 944/2013/EU of 2 October 2013

6th ATP - Regulation 605/2014/EU of 5 June 2014

WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014

Revised List of Waste 2014 - Decision 2014/955/EU of 18 December 2014

7th ATP - Regulation 2015/1221/EU of 24 July 2015

8th ATP - Regulation (EU) 2016/918 of 19 May 2016

9th ATP - Regulation (EU) 2016/1179 of 19 July 2016

10th ATP - Regulation (EU) 2017/776 of 4 May 2017

HP14 amendment - Regulation (EU) 2017/997 of 8 June 2017

13th ATP - Regulation (EU) 2018/1480 of 4 October 2018

14th ATP - Regulation (EU) 2020/217 of 4 October 2019

15th ATP - Regulation (EU) 2020/1182 of 19 May 2020

The Chemicals (Health and Safety) and Genetically Modified Organisms (Contained Use)(Amendment etc.) (EU Exit)

Regulations 2020 - UK: 2020 No. 1567 of 16th December 2020

The Waste and Environmental Permitting etc. (Legislative Functions and Amendment etc.) (EU Exit) Regulations 2020 - UK:

2020 No. 1540 of 16th December 2020

17th ATP - Regulation (EU) 2021/849 of 11 March 2021

18th ATP - Regulation (EU) 2022/692 of 16 February 2022

19th ATP - Regulation (EU) 2023/1434 of 25 April 2023

20th ATP - Regulation (EU) 2023/1435 of 2 May 2023

21st ATP - Regulation (EU) 2024/197 of 19 October 2023

22nd ATP - Regulation (EU) 2024/2564 of 19th June 2024

Page 26 of 26 JOML9-8020H-XXEFL www.hazwasteonline.com

Appendix 8 Survey Data

Survey Data

Location	Irish Transverse Mercator		Elevation	Irish National Grid					
Location	Easting	Northing	Elevation	Easting	Northing				
Cable Percussive Boreholes									
BH01	549897.532	728412.923	48.67	149935.949	228384.543				
BH02	549873.782	728421.710	49.17	149912.193	228393.332				
BH03	549879.267	728454.664	49.37	149917.679	228426.293				
BH04	549903.212	728433.463	49.02	149941.630	228405.088				
BH05	549840.317	728437.364	49.46	149878.721	228408.989				
Trial Pits									
TP01	549913.247	728417.282	48.57	149951.667	228388.903				
TP02	549884.776	728406.929	48.93	149923.190	228378.548				
TP03	549894.623	728452.874	49.19	149933.039	228424.503				
TP04	549869.253	728441.571	49.43	149907.663	228413.197				
TP05	549846.901	728428.607	49.56	149885.307	228400.23				
Soakaway Tests									
INF1	549900.655	728392.806	48.41	149939.072	228364.422				
INF2	549867.645	728393.548	48.85	149906.055	228365.164				
INF3	549861.664	728420.178	49.31	149900.073	228391.799				
INF4	549889.857	728424.016	49.12	149928.272	228395.638				
Plate Tests									
PLT1	549919.697	728406.093	48.25	149958.118	228377.712				
PLT2	549882.849	728391.507	48.64	149921.262	228363.122				
PLT3	549852.680	728446.002	49.52	149891.087	228417.629				
PLT4	549877.509	728463.106	49.42	149915.921	228434.737				

